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Abstract 
Protein degradation through the ubiquitin proteasome system at the spatial and temporal regulation is essential for many cellular 
processes. E3 ligases and degradation signals (degrons), the sequences they recognize in the target proteins, are key parts of the 
ubiquitin-mediated proteolysis, and their interactions determine the degradation specificity and maintain cellular homeostasis. To 
date, only a limited number of targeted degron instances have been identified, and their properties are not yet fully characterized. To 
tackle on this challenge, here we develop a novel deep-learning framework, namely MetaDegron, for predicting E3 ligase targeted degron 
by integrating the protein language model and comprehensive featurization strategies. Through extensive evaluations using benchmark 
datasets and comparison with existing method, such as Degpred, we demonstrate the superior performance of MetaDegron. Among 
functional features, MetaDegron allows batch prediction of targeted degrons of 21 E3 ligases, and provides functional annotations and 
visualization of multiple degron-related structural and physicochemical features. MetaDegron is freely available at http://modinfor. 
com/MetaDegron/. We anticipate that MetaDegron will serve as a useful tool for the clinical and translational community to elucidate 
the mechanisms of regulation of protein homeostasis, cancer research, and drug development. 
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Introduction 
Cells employ protein degradation to eliminate damaged, abnor-
mal, misfolded, and other unnecessary proteins [1, 2]. In 
eukaryotic cells, protein degradation primarily occurs through the 
ubiquitin-proteasome system (UPS) [3]. This process is not only 
vital for maintaining protein homeostasis but also essential for 
ensuring the proper functioning of cellular processes such as cell 
cycle progression, signal transduction, differentiation, and growth 
[4, 5]. Dysfunction in protein degradation can lead to various 
diseases, including malignant tumors and neurodegenerative 
disorders [6–8]. Ubiquitin (Ub), a highly conserved protein 
composed of 76 amino acids with a molecular weight of 8 kDa, 
plays a central role in this process. The coordinated action of 
ubiquitin ligases, including the E1: Ub-activating enzyme, E2: Ub-
conjugating enzyme, and E3: Ub-ligase, triggers a cascade reaction 
that attaches ubiquitin to the protein designated for degradation, 
forming a ubiquitinated protein complex. In the initial step, E1 
activates Ub in the presence of adenosine triphosphate and 

binds the C-terminus of Ub to the active site of E1 (step 1). 
Subsequently, the activated Ub binds to the cysteine residue in the 
active site of E2, transferring the activated Ub to E2 (step 2). With 
the catalytic assistance of E3, the carboxyl-terminal glycine of 
ubiquitin conjugates to the amino group of the substrate protein 
residue, typically lysine, resulting in the ubiquitination of the 
substrate protein (step 3) [9–11]. 

Degradation signals (degrons) are short linear amino acid 
motifs, located on target protein substrates [12–14]. When a 
protein receives a degradation signal, the degron becomes 
exposed and recognized, after which it is bound by E3 ubiquitin 
ligase [15, 16]. This binding facilitates the entry of ubiquitinated 
protein substrates into the enzyme network centered on the 
26S proteasome for degradation [17]. The interaction between 
E3 ligase and the degron is highly specific, playing a pivotal 
role in determining degradation specificity and maintaining 
cellular homeostasis [18–20]. An example of this mechanism is 
the degradation-specific binding of MDM2 (E3) to the degron in 
the tumor suppressor protein p53, which facilitates the targeted
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degradation of p53 [14, 21, 22]. Under normal conditions, despite 
continuous production, p53 is kept at low levels in the cytoplasm 
due to its ongoing degradation by the UPS. However, when 
cells are stimulated by external signals, changes in the degron 
sequence or structure prevents binding to MDM2, resulting in 
abnormal accumulation of p53 within the cell. This abnormal 
accumulation then triggers a series of cellular cytotoxic effects, 
such as cell cycle arrest and apoptosis [6, 23]. The identification 
of E3-degron interactions is fundamental to understanding the 
dynamic regulation of proteins. 

Recently, the development of high-throughput experimental 
techniques and proteomics technologies has expanded our 
understanding of E3s and degrons within the UPS, thereby 
accelerating the development of targeted protein degradation-
based drug therapies and bringing hope to numerous patients 
[13, 23–29]. However, the identification of degrons remains 
challenging due to the undetermined substrates for most E3s. The 
nature of degron and publicly available data sets make it possible 
to develop computational methods to identify it using pattern 
recognition and machine learning techniques, which facilitates 
the development of a number of bioinformatic resources/tools 
available for degron identification [30–32]. The APC/C degron 
repository provides valuable insights into the determinants of 
APC/C degron sequences [33], encompassing information regard-
ing to disordered regions and post-translational modifications. 
Complementarily, the Eukaryotic Linear Motif (ELM) resource 
catalogues numerous degron motifs present in proteins [34]. 
Specifically, DegronMD serves as a novel resource tailored for the 
comprehensive exploration of degrons, encompassing associated 
functional aberrations and responses to pharmacological treat-
ments [35]. This resource contains 23 distinct internal degrons 
within the human proteome. Augmenting these bioinformatic 
repositories, deep learning models such as Degpred [30] and  
deepDegron [28] have emerged for the prediction of degrons 
and the assessment of their perturbations by mutations, respec-
tively. Notably, deepDegron predicts the likelihood of a protein 
sequence harboring N- or C-terminal degrons, mandating specific 
mutation input files. Conversely, Degpred leverages a BERT-
based architecture to primarily predict internal degrons based 
solely on sequence information. Additionally, DEGRONOPEDIA 
[31] has been introduced as a novel web server dedicated to 
the identification and analysis of degron motifs within proteins, 
enabling the prediction of potential N-/C-degrons subsequent to 
proteolytic events (summarized in Supplementary Table S1). 

Although the early methods for screening the binding of E3 
targeted degrons showed promising, the majority of the models 
were developed by solely utilizing motif matching or sequence-
based machine learning models, which prevents them from 
learning the whole complex features of degrons, especially the 
structural properties. In addition, none of the previous methods 
build an online responsive platform to provide timely and 
customized predictions for E3 targeted degron, restricting its 
capability for degron identifications. In this study, we present 
the MetaDegron, a novel bioinformatics tool accompanied by a 
user-friendly web service, designed to predict E3 targeted degron. 
MetaDegron incorporates comprehensive featurization strategies 
and leverages the protein language model to identify novel degron 
instances, which was trained on a curated dataset of 300 degron 
instances. Moreover, extensive evaluation and comparative 
analysis demonstrate the superior performance of MetaDegron. 
Functionally, MetaDegron offers the convenience of batch 
prediction for targeted degrons associated with 21 E3 ligases. 
Furthermore, the web service provides functional annotations 

and visualization tools for a range of degron-related structural 
and physicochemical features. MetaDegron can be accessed freely 
at http://modinfor.com/MetaDegron/ and https://github.com/ 
BioDataStudy/MetaDegron, enabling broad accessibility to the 
research community and facilitating exploration within the fields 
of biological mechanisms, protein degradation implications, and 
degron-centric drug development. 

Methods 
Data preparation 
We collected and processed a set of human degron motifs, which 
are E3 binding consensus patterns, from the ELM database [36], 
and over 300 degron instances from a number of previous studies 
(Supplementary Table S2) [14, 30, 32, 37]. For instance, β-TrCP2 (E3, 
known as FBXW11) recognizes DSGxxS consensus degron motif, 
where x denotes any one of the 20 amino acids. In order to improve 
the characterization of degrons, we constructed a comprehen-
sive background dataset comprising a considerable number of 
randomly selected peptides with the same length as the degron 
instances (Supplementary Table S3). This strategy enabled us 
to perform comparative analysis based on peptide sequences of 
similar length, thus providing a suitable control to evaluate the 
specificity of degron sequences. To further investigate the struc-
tural and physicochemical properties associated with the curated 
degrons, multiple analyses were performed [38–45]. We calculated 
10 features for all motif instances or random peptides. Specifi-
cally, the determination of residue-specific flexibility utilized the 
DynaMine software [40] employing default parameters. Residue-
specific solvent accessibility and secondary structures, including 
coiled coil and α-helix, were computed using the Spider2 tool 
[39]. Protein disorder was assessed through the utilization of the 
IUPred software [38]. The anchoring score of each degron was eval-
uated employing the ANCHOR program [46]. Multiple sequence 
alignments (MSA) of orthologous proteins were acquired utilizing 
the Gopher tool from Bioware [47] to calculate sequence conser-
vation. Information pertaining to protein domains was retrieved 
from the Pfam database [41]. Moreover, we evaluated the enrich-
ment of important post-translational modifications (PTMs, phos-
phorylation and ubiquitination) within and around degrons. The 
experimentally verified PTMs information was downloaded from 
our constructed Eukaryotic Phosphorylation Sites Database [43] 
and Protein Lysine Modifications Database resources [42], respec-
tively. By comprehensively analysing and elucidating the prop-
erties of these degrons, we can gain valuable insights into their 
sequence motifs, structural features, and biochemical properties. 
Such insights not only enhance our understanding of protein 
degradation but also facilitate the development of more accurate 
prediction models. To facilitate the development and evaluation 
of our models, the constructed dataset was partitioned into a 
training dataset, which represented 90% of the total data, and an 
independent dataset, which accounted for the remaining 10% of 
the data. 

Model architecture 
Based on curated degrons and random peptides, we employed 
a bootstrapping strategy to train 10 eXtreme Gradient Boosting 
(XGBoost) classifiers [48], leveraging multiple distinguishing 
features between these two groups. Exhaustively exploring 
numerous parameter combinations for each classifier, we then 
selected the optimal parameters through multiple rounds of 
cross-validation (CV) assessments. The average prediction scores 
of these 10 models were employed to establish the ultimate
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probability of degron occurrence. To ensure that the model can 
make predictions when the protein features are not matched, we 
extended its functionality by incorporating a deep neural network 
(DNN). 

The DNN architecture employed by MetaDegron comprises 
two distinct components, as illustrated in Fig. 3. The initial 
component utilizes context-sensitive embeddings of amino acids 
generated by Embeddings from Language Models (ELMo) [49], 
known for its efficacy in various protein sequence prediction 
tasks. ELMo is a contextual word embedding technique originally 
developed for natural language processing tasks. Here, we 
used SeqVec, a protein-specific adaptation of ELMo, leverages 
bidirectional Long Short-Term Memory (BLSTM) networks to 
generate context-sensitive embeddings for amino acid sequences. 
By modeling protein sequences, SeqVec effectively captured the 
biophysical properties of the language of life from unlabeled big 
data (UniRef50), which allows SeqVec to generate embeddings 
that encode the contextual dependencies between amino 
acids across the entire sequence. Each amino acid in a given 
protein sequence is encoded into a 1024-dimensional vector, 
encapsulating chemical, physical, and structural information. 
These embeddings are then used as inputs for a BLSTM layer and 
a convolution-pooling layer, which are sequentially connected to 
a dense layer for feature integration. 

By employing convolutional layers followed by max-pooling 
operations, the convolutional neural network (CNN) component 
of our model can effectively extract hierarchical features rep-
resenting short-range interactions between amino acid residues. 
These features capture local sequence motifs that may be indica-
tive of E3 ligase targeting signals or degron recognition motifs. 
The second component of the DNN architecture involves encod-
ing each amino acid into an adjustable-length vector, which is 
context-insensitive and undergoes joint training with the rest 
of the DNN. This embedding layer is connected to a BLSTM 
layer followed by another dense layer. Here, we leverage word 
embedding techniques, inspired by natural language processing, 
to transform each amino acid residue within a peptide segment 
into a dense, continuous vector representation. Similarly, in the 
context of peptide sequences, we can exploit the inherent similar-
ities and relationships between amino acids to learn meaningful 
representations that capture their contextual dependencies. By 
integrating a BLSTM network with the word embedding model, 
we enable the model to capture both forward and backward 
sequential dependencies within peptide sequences. Subsequently, 
the two dense layers are further connected to an additional pair of 
dense layers, ultimately culminating in an output layer with two 
nodes representing the degron and random peptide classes. 

Model evaluation 
In this study, we adopt a rigorous validation framework that 
encompasses both CV techniques and independent test sets 
to comprehensively evaluate the performance of MetaDegron. 
Firstly, we employed five-fold CV, a widely used technique in 
machine learning, to assess the model’s performance on the 
training dataset. This involves partitioning the dataset into k 
subsets, training the model on k-1 subsets, and evaluating its 
performance on the remaining subset. This process is repeated 
k times, with each subset serving as the validation set once. By 
averaging the performance metrics across multiple iterations, 
we obtain a more reliable estimate of the model’s predictive 
performance and robustness to variations in the training data. 
Specifically, For the MetaDegron model, receiver operating char-
acteristic (ROC) curves were constructed for each subset and five 

ROC curves were generated, and subsequently, a mean ROC curve 
was calculated, ensuring that each of the five models carried 
equal weight. In order to assess the model’s generalizability, 
ROC curves were plotted, and the corresponding area under the 
ROC curve (AUC) values were determined using an independent 
dataset. In general, the AUC values range from 0 to 1, while a 
higher AUC value indicates a higher accuracy of a predictive 
model. Moreover, additional metrics, e.g., the area under the 
precision-recall curve (AUPRC), accuracy, recall and F1-score, were 
also calculated for a comprehensive comparative analysis. We 
also compared the performance of the MetaDegron with previous 
method using an additional dataset comprising experimentally 
validated substrates of β-TrCP2 (Supplementary Table S4). To 
avoid the possible bias caused by a random sampling from the 
background dataset, the random sampling was performed 10 
times, and the same number of random peptides with the same 
length was extracted each time. We calculated the average AUC, 
AUPRC, accuracy, recall, and F1-score. 

Website implementation 
The MetaDegron web server was developed following the standard 
Model-View-Controller framework, a prevalent approach in 
contemporary web application design [50]. This framework 
was structured into three primary logical components, namely 
‘Prediction’, ‘Results’, and ‘Controller’, which collectively con-
stitute the MetaDegron system. On the backend, the system 
integrates two well-optimized models, specifically XGBoost and 
deep learning models denoted as MetaDegron-X and MetaDegron-
D, tailored for the prediction of E3 ligase-targeted degrons. 
The ‘Controller’ module serves a pivotal role by validating the 
input data’s format, facilitating the transfer of data from the 
frontend interfaces to the backend, orchestrating the execution 
of predictive models, and ultimately delivering the results to the 
‘Results’ page. The ‘Prediction’ component, positioned as the 
frontend interface, enables user interactions with the system. 
To ensure a responsive server, both the ‘Prediction’ and ‘Results’ 
interfaces were constructed using an amalgamation of HTML5, 
CSS (utilizing Bootstrap3), and JavaScript. jQuery, a JavaScript 
library, was employed to leverage Ajax technology for seamless 
communication with the ‘Controller’ module. Additionally, PHP 
was employed as a complementary tool for the presentation 
of results. In the ‘Results’ page, the MetaDegron provides the 
functional annotations and visualizations of degron-related 
features and source protein. For the degron, the properties 
calculated by MetaDegron are provided for users. For the source 
protein, the base information is obtained to display from the 
UniProt database. The interacting proteins of source protein, 
including E3s and deubiquitinating enzymes (DUBs) are provided 
with a tabular list and an interactive network based on the 
Cytoscape.js [51]. For both degron and source protein, the 
structural and MSA information are visualized by 3Dmol.js [52] 
and ProViz tool [53], respectively. 

Results 
Overview of the MetaDegron framework 
MetaDegron is a novel tool specifically designed for precise degron 
prediction using machine learning techniques (Fig. 1). It com-
prises two distinct models: MetaDegron-D and MetaDegron-X, 
each employing different methodologies for degron prediction. 
MetaDegron-D operates by extracting features solely from the 
protein sequence. The input to this model is peptide segments
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Figure 1. The overall framework of MetaDegron. 

that are centered around the degron region. We employ a pre-
trained protein model to represent each degron, which generates 
context-sensitive embeddings in a 1024-dimensional space. These 
embeddings undergo further processing using various feature 
extraction networks such as convolution-pooling or BLSTM layers. 
In addition, another word embedding model integrating BLSTM 
network was utilized to convert the peptide segment into a 27-
dimensional vector for pattern extraction. These two compo-
nents are combined through pairing of these fully connected 
networks, resulting in the final degron prediction. On the other 
hand, MetaDegron-X takes into consideration multiple distinctive 
features of a degron itself. This model employs input features that 
encompass various aspects of the degron, including sequence, 
evolution, and structure. To achieve this, an XGBoost classifier 
is employed for final prediction. Overall, MetaDegron possesses 
the capability to predict targeted degrons of 21 E3 ligases in a 
batch manner, and provides functional annotations and visual-
ization of multiple degron-related structural and physicochem-
ical features. The comprehensive functionality of MetaDegron 
allows researchers to gain crucial insights into the functional 
aspects of degrons and their relation to a wide range of protein 
characteristics. 

Characterization and prediction of degron with 
structure characteristics 
Targeted degrons play pivotal roles in regulating protein stability 
and turnover within the cell, influencing various cellular 
processes. Understanding the structure characteristics of degrons 
is crucial for predicting their degradation potential and unraveling 
their functional implications. To characterize the structure 
features of degrons, we analyzed curated, experimentally 
validated degrons by comparing them to a background dataset. 
We employed various structural bioinformatics algorithms and 
tools to identify common structural properties within degrons 
[36, 38, 39, 41–43, 45]. Remarkably, the known degrons exhibited 
a higher degree of solvent accessibility and binding stability 
compared to the random peptides (Fig. 2A and B), suggesting 
their importance in recognition by degradative enzymes. Fur-
thermore, degrons were found to be preferentially located in 
protein disordered regions (Fig. 2C), highlighting their distinctive 
localization patterns. Additionally, the analysis revealed a specific 
preference of degrons for coiled coil regions rather than α-helix 

regions (Fig. 2D and E). It was also observed that degrons tend to 
occur in lower flexibility regions (Fig. 2F). These findings provided 
valuable insights into the structural characteristics of degrons 
and indicate potential determinants for degron recognition 
and degradation. Subsequently, the XGBoost classifier (called 
MetaDegron-X) was constructed using these discerning features 
for E3 targeted degron. The performance of MetaDegron-X, 
as assessed by the AUC values, was promising. Specifically, 
the AUC values ranged from 0.83 to 0.89 in a five-fold CV, 
with an average AUC value of 0.87 (Fig. 2G). Furthermore, 
validation of the developed MetaDegron-X was carried out on an 
independent testing dataset. The performance of MetaDegron-X 
was superior, as denoted by the AUC value of 0.86 (Fig. 2H). These 
findings collectively demonstrated the high accuracy and robust 
performance achieved by MetaDegron-X. 

In addition, we conducted an elimination study to assess the 
association between each feature and the prediction results. 
Specifically, we systematically removed one feature at a time 
from the input data and evaluated the impact on the predictive 
performance of our model. By quantifying the change in AUC 
value through five-fold CV, we revealed the relative importance of 
each feature in predicting E3 ligase targeted degrons (Fig. 2I). From 
the results, we found all features contribute to the construction 
of the model, i.e. the performance of the models decreased to 
different degrees after removing the specific features. Overall, 
those features, such as disorder and the number of PTMs within 
the degron region, represented the most important features. 
This is consistent with the facts that degrons are preferentially 
located in disordered regions and regulated by PTMs that control 
the interaction with E3s in response to environmental and 
cellular cues. 

Enhancing the MetaDegron system using deep 
learning technology 
The inability to match protein features on certain occasions may 
pose a challenge for feature-driven MetaDegron-X to achieve 
prediction. To address this issue and enhance the prediction 
capabilities of the model, we have developed an extended version 
called MetaDegron-D. By incorporating a deep learning framework 
(see ‘Methods’ part), MetaDegron-D was capable of solely 
operating on protein sequences. This novel approach utilized 
a hybrid architecture comprising cutting-edge deep learning
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Figure 2. Performance of MetaDegron based on protein features. (A-F) the statistics of multiple characteristic features for the known degron instances 
and random peptides, including solvent accessibility (A), binding stability (B), disorder (C), α-helix (D), coiled coil (E), and flexibility (F). (G-H) ROC curves 
for MetaDegron-X in different five-fold CV (G) and independent testing dataset (H). (I) Elimination study to assess the association between each feature 
and the prediction results. 

networks ( Fig. 3A), such as protein language models, word 
embeddings, convolution, and BLSTM, as thoroughly detailed in 
the methodology section. This deep learning framework allows 
MetaDegron-D to leverage the full potential of these advanced 
networks and their ability to extract high-level features from 
protein sequences. The performance evaluation of MetaDegron-D 
demonstrated its great predictive capabilities. Through a five-
fold CV approach, we obtained an average AUC value of 0.90. 
Furthermore, the AUC values ranged from 0.89 to 0.92, indicating 
consistent and reliable performance (Fig. 3B). Additionally, when 
tested with an independent dataset, MetaDegron-D achieved an 
improved AUC value of 0.90 (Fig. 3C). These results suggested the 
robustness and accuracy of MetaDegron-D in predicting protein 
features solely from the sequence information. 

Moreover, we assessed the performance of the MetaDegron 
using an additional dataset comprising experimentally validated 
substrates of β-TrCP2, as detailed in Supplementary Table S4. We  
first extracted all reported substrates, and matched and filtered 
those with an instance of β-TrCP2 degron within their protein 
sequence. A subset consisting of 20 substrates exhibiting the 
presence of the β-TrCP2 degron was designated as the positive 
dataset. We also constructed a background dataset comprising 
over 700 randomly selected peptides with the same length 
as the degron instances (Supplementary Table S4). Using this 
new benchmark dataset, we compared MetaDegron to Degpred 
and found that MetaDegron could achieve better AUROC value 
(Fig. 3D). The AUC values were computed as 0.9705 (ranged from 
0.9275 to 0.9950, MetaDegron-D), 0.9670 (ranged from 0.9425 
to 0.9875, MetaDegron-X), and 0.9540 (ranged from 0.9300 to 
0.9700, Degpred), respectively. We also computed the additional 
metrics, e.g. AUPRC, accuracy, recall, and F1-score, for our 

models and Degpred. MetaDegron still outperformed Degpred 
in term of these metrics (Supplementary Table S5). Through 
extensive evaluation on benchmark datasets and comparison 
with Degpred, we demonstrated the superior performance of 
MetaDegron. 

To further explore the capabilities of the MetaDegron frame-
work, we utilized the visualization method described by Becht 
et al. [54] to compare the features of degrons and random peptides 
across each network layer (Fig. 3E-I). As expected, the feature 
representations of the input layer for both degrons and random 
peptides exhibited significant overlap and mixing (Fig. 3E). How-
ever, as the framework underwent training, a clear distinction 
between degrons and random peptides emerged, resulting in more 
separated clusters within the feature space (Fig. 3I). This observa-
tion emphasizes the effectiveness of the MetaDegron-D model in 
identifying efficient features and differentiating between degrons 
and random peptides. 

The usage of MetaDegron 
MetaDegron serves as a useful tool for predicting targeted degrons 
of 21 E3 ligases, offering researchers possible candidates for study-
ing protein degradation pathways and identifying potential ther-
apeutic targets. The multimodal feature integration approach 
enables MetaDegron to capture diverse aspects of degron recog-
nition, including amino acid composition, physicochemical prop-
erties, evolutionary conservation, and contextual dependencies, 
thereby enhancing its capabilities for advancing research in the 
field of protein degradation and ubiquitin-mediated proteolysis. 
The webserver of MetaDegron was designed and constructed 
with a modular and user-friendly manner (Fig. 4). Three major 
modules, including ‘Run’, ‘Results’ and ‘Tutorial’, are the kernel of
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Figure 3. Implementation and performance of MetaDegron based on deep learning framework. (A) The hybrid deep learning architecture of MetaDegron. 
(B-C) ROC curves for MetaDegron-D in different five-fold CV (B) and independent testing dataset (C). (D) Comparison of MetaDegron with Degpred on the 
additional independent dataset. (E-I) feature representation of the known degrons and random peptides using the UMAP method in each network layer, 
including input layer (E), dense layer (context-sensitive) (F), dense layer (context-insensitive) (G), joint features layer (H), dense layer (before output) (I). 

MetaDegron online server ( Fig. 4A). The ‘Run’ module sequentially 
controls the execution of submitted jobs, including the input 
checking, job submitting, job running, and task terminates. Mean-
while, the ‘Results’ module records the submission jobs, monitors 
the status of jobs, and immediately shows the prediction results. 
The clickable and searchable hierarchical classification tree of 

E3s is loaded for the selection of single or multiple E3 ligases 
(Fig. 4B). Then, one or more protein sequences in FASTA format 
can be submitted. After finishing the submitted job, the prediction 
results will be visualized with specific information, including 
the ‘Entry’, ‘E3 ligase’, ‘Degron instance’, ‘Degron type’, ‘Start’, 
‘End’, and ‘Score’. It displays the detailed information for degron
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Figure 4. The usage of MetaDegron webserver. The general pipeline for MetaDegron server. (B) The example selection of E3s and sequences in the 
‘prediction’ page. (C) The feature properties of selected degron. (D-F) The annotations of source protein for selected degron, including the base and 
structure information (D), the MSA viewer (E), and the interacting annotations (F). 

and source protein ( Fig. 4C-F). The properties of degron (Fig. 4C) 
and information of source protein (Fig. 4D) are displayed as well. 
In addition, the structure of source protein is presented with 
3Dmol.js [52], and the degron instance is marked with highlights. 
Moreover, the MSA of degron instance and source protein are 
visualized by using the ProViz tool [53] (Fig. 4E), and the interacting 
E3s or DUBs of source protein are provided in a tabular list and an 
interactive network based on the Cytoscape.js [51] (Fig. 4F). Taken 
together, MetaDegron is a user-friendly online tool for the study 
of targeted protein degradation. 

Discussion 
Targeted protein degradation represents a highly promising thera-
peutic modality that is currently gaining considerable attention in 
the biomedical fields [5, 8, 55–60]. In the ubiquitin proteasome sys-
tem, the interactions between E3 ligase and the degradation signal 
(degron) is critical for determining degradation specificity and 
maintaining cellular homeostasis. In this study, we develop a new 
approach, called MetaDegron, for predicting E3 targeted degron, 
based on our careful data collection, curation, and analysis. The 
built-in models of MetaDegron integrate comprehensive featur-
ization strategies and large protein language model, displaying 
great performance in both machine learning and deep leaning 

models. MetaDegron represents a novel framework that integrates 
state-of-the-art protein language models with a diverse array 
of featurization techniques to enhance the predictive accuracy 
of E3 ligase targeted degrons. By leveraging protein language 
models, MetaDegron can effectively extract high-dimensional 
embeddings that encode rich contextual information from the 
input protein sequences. Moreover, MetaDegron utilizes a multi-
modal feature integration approach, which combines contextual 
information, sequence-based features, and structural features to 
improve prediction performance. This innovative tool first time 
enables users to perform batch prediction of targeted degrons 
for 21 E3 ligases, while it also provides functional annotations 
and visualizations of various degron-related structural and 
physicochemical features. 

Our structural analyses in this study help a deep understand-
ing of the structural characteristics of degrons. Accordingly, we 
developed a robust computational method, MetaDegron-X, for 
predicting E3-targeted degrons. The identification of degron struc-
tural properties and the development of accurate prediction tools 
are crucial steps towards unraveling the regulatory mechanisms 
underlying protein degradation processes and may have implica-
tions for drug discovery and biomedical research [15, 61]. More-
over, our extended MetaDegron-D model demonstrates excellent 
predictive performance, indicating its potential to overcome the
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challenges posed by mismatched protein features. The incor-
poration of a deep learning framework enables MetaDegron-D 
to operate solely on protein sequence information and achieve 
accurate predictions. The visualization of degrons and random 
peptides further supports the efficacy of the MetaDegron-D model 
in distinguishing between these two classes based on their spe-
cific features. 

The protein homeostasis primarily depends on the protein 
degradation via UPS, and the aberrant regulations of protein 
homeostasis can lead to various diseases, including cancer, neu-
rodegenerative disorders, and inflammatory conditions. Predict-
ing E3 ligase targeted degrons holds significant promise for accel-
erating our understanding of protein degradation pathways and 
facilitating the discovery of novel therapeutic targets. By identify-
ing specific sequences recognized by E3 ligases for ubiquitination 
and subsequent degradation, MetaDegron enables the character-
ization of substrate specificity and regulatory mechanisms of E3 
ligases, shedding light on their roles in protein degradation and 
homeostasis. In addition, predicting E3 ligase targeted degrons 
can provide critical insights into the aberrant protein turnover 
mechanisms driving oncogenesis and tumor progression. By elu-
cidating the substrate specificity and regulatory networks of E3 
ligases in cancer cells, researchers can identify therapeutic tar-
gets for precision oncology interventions. Moreover, MetaDegron’s 
predictive capabilities have implications for drug discovery and 
development efforts targeting protein degradation pathways. By 
enabling the identification of candidate substrates for E3 ligases, 
MetaDegron can facilitate the screening and prioritization of 
compounds that modulate protein degradation processes. Finally, 
MetaDegron may aid in the design of targeted therapies aimed 
at selectively inducing protein degradation of disease-associated 
proteins, offering a new paradigm for drug development. Overall, 
predicting E3 ligase targeted degrons has far-reaching implica-
tions for basic research, translational studies, cancer research, 
and drug development. By providing insights into degradation 
mechanisms, identifying therapeutic targets, and guiding preci-
sion medicine approaches, we anticipate that the MetaDegron can 
serve as a useful tool to identify E3-targeted degrons for further 
research of protein regulation and drug development. 

There are some limitations in this study. First, degrons are short 
linear motifs specifically recognized by E3s; therefore, the proteins 
with similar degrons may be recognized by a specific E3 to further 
off-target degradation. However, the interaction of E3 and degron 
really provides the potential approach to degrade the drug target. 
Meanwhile, the off-target effects of the predicted molecule can be 
reduced in the design of targeted drug, such as the consideration 
of more molecular features of target protein, the discovery of lig-
and, and the development the molecular glue. Another potential 
limitation lies in the biases present in the datasets used for train-
ing and evaluation. Experimental studies characterizing degron 
sequences may exhibit biases towards certain protein families, 
cellular contexts, or experimental techniques. Consequently, the 
predictive performance of our model may be influenced by the 
distribution of data across different classes and may not fully 
generalize to unseen data or underrepresented classes. Espe-
cially, the number of known degron instances, reported E3-degron 
interactions, and E3-substrate interactions are still limited. In 
addition, our approach relies on the integration of diverse fea-
tures, including sequence-based, structural, and contextual fea-
tures, to characterize degron sequences comprehensively. How-
ever, the selection and representation of these features may intro-
duce implicit assumptions about the underlying mechanisms 
of E3 ligase targeting and degron recognition. While we aim to 

capture a broad range of sequence-structure relationships, our 
feature representation may not fully capture all relevant aspects 
of degron recognition, leading to potential limitations in pre-
dictive performance. Also, while our model provides accurate 
predictions of E3 ligase targeted degrons, the interpretability of 
these predictions may be limited. It may be challenging to elu-
cidate the underlying biological mechanisms, especially for com-
plex or novel sequences. More experimental validation is neces-
sary to further optimize the reliability of the predictions. Enhanc-
ing the interpretability of our model’s predictions could improve 
its utility for guiding experimental validation and hypothesis gen-
eration. In terms of performance comparison, both deepDegron 
and DEGRONOPEDIA were developed for predicting N-/C-degrons, 
whereas only Degpred supported the prediction of internal degron 
and E3-degron interactions. Thus, only Degpred tool was used for 
performance comparison in this study. We expect more tools to be 
developed in the future, leading to more extensive comparisons. 

In future, more useful features and machine learning frame-
works will be adopted for the improvement of MetaDegron mod-
els. We expect more E3 and their targeted degrons will be discov-
ered, and they will be integrated into our framework to extend the 
benchmark dataset and improve the performance of MetaDegron. 
Moreover, the functional prediction of E3s and targeted degrons 
should be considered by combining the high-throughput omics 
and computational prediction. We will continuously maintain and 
improve the server of MetaDegron. 

Key Points 
• We integrate the protein language model and com-

prehensive featurization strategies to develop a novel 
framework, namely MetaDegron for the identification of 
new degron for targeted protein degradation. 

• MetaDegron covers 21 E3 ligases-targeted degron predic-
tions, showing excellent performance through extensive 
evaluation and comparative analysis. 

• MetaDegron implements an online prediction website 
and provides functional annotations and visualization of 
multiple degron-related structural and physicochemical 
features. 
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38. Erdős G, Pajkos M, Dosztányi Z. IUPred3: Prediction of protein 
disorder enhanced with unambiguous experimental annotation 
and visualization of evolutionary conservation. Nucleic Acids Res 
2021;49:W297–w303. https://doi.org/10.1093/nar/gkab408. 

39. Yang Y, Heffernan R, Paliwal K. et al. SPIDER2: A package 
to predict secondary structure, accessible surface area, and 
main-chain torsional angles by deep neural networks. Methods 
Mol Biol 2017;1484:55–63. https://doi.org/10.1007/978-1-4939-
6406-2_6. 

40. Cilia E, Pancsa R, Tompa P. et al. The DynaMine webserver: 
Predicting protein dynamics from sequence. Nucleic Acids Res 
2014;42:W264–70. https://doi.org/10.1093/nar/gku270. 

41. Mistry J, Chuguransky S, Williams L. et al. Pfam: The protein 
families database in 2021. Nucleic Acids Res 2021;49:D412–d419. 
https://doi.org/10.1093/nar/gkaa913. 

42. Xu H, Zhou J, Lin S. et al. PLMD: An updated data resource of 
protein lysine modifications. J Genet Genomics 2017;44:243–50. 
https://doi.org/10.1016/j.jgg.2017.03.007. 

43. Lin S, Wang C, Zhou J. et al. EPSD: A well-annotated data resource 
of protein phosphorylation sites in eukaryotes. Brief Bioinform 
2021;22:298–307. https://doi.org/10.1093/bib/bbz169. 

44. Xu H, Zhao Z. NetBCE: An interpretable deep neural network 
for accurate prediction of linear B-cell epitopes. Genomics Pro-
teomics Bioinformatics 2022;20:1002–12. https://doi.org/10.1016/j. 
gpb.2022.11.009. 

45. Wang C, Xu H, Lin S. et al. GPS 5.0: An update on the prediction 
of kinase-specific phosphorylation sites in proteins. Genomics 
Proteomics Bioinformatics 2020;18:72–80. https://doi.org/10.1016/j. 
gpb.2020.01.001. 

46. Mészáros B, Simon I, Dosztányi Z. Prediction of protein binding 
regions in disordered proteins. PLoS Comput Biol 2009;5:e1000376. 
https://doi.org/10.1371/journal.pcbi.1000376. 

47. Lee TJ, Pouliot Y, Wagner V. et al. BioWarehouse: A bioinformat-
ics database warehouse toolkit. BMC Bioinformatics 2006;7:170. 
https://doi.org/10.1186/1471-2105-7-170. 

48. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. 
In Proceedings of the 22nd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining. Association for Computing 
Machinery, New York, NY, USA, 2016;785–794. 

49. Heinzinger M, Elnaggar A, Wang Y. et al. Modeling aspects of the 
language of life through transfer-learning protein sequences. 

BMC Bioinformatics 2019;20:1–17. https://doi.org/10.1186/s12859-
019-3220-8. 

50. Xu H, Hu R, Jia P. et al. 6mA-finder: A novel online tool for 
predicting DNA N6-methyladenine sites in genomes. Bioinfor-
matics 2020;36:3257–9. https://doi.org/10.1093/bioinformatics/ 
btaa113. 

51. Franz M, Lopes CT, Fong D. et al. Cytoscape.js 2023 update: 
A graph theory library for visualization and analysis. Bioinfor-
matics 2023;39:btad031. https://doi.org/10.1093/bioinformatics/ 
btad031. 

52. Rego N, Koes D. 3Dmol.Js: Molecular visualization with 
WebGL. Bioinformatics 2015;31:1322–4. https://doi.org/10.1093/ 
bioinformatics/btu829. 

53. Jehl P, Manguy J, Shields DC. et al. ProViz-a web-based visualiza-
tion tool to investigate the functional and evolutionary features 
of protein sequences. Nucleic Acids Res 2016;44:W11–5. https:// 
doi.org/10.1093/nar/gkw265. 

54. Becht E, McInnes L, Healy J. et al. Dimensionality reduction for 
visualizing single-cell data using UMAP. Nat Biotechnol 2019;37: 
38–44. https://doi.org/10.1038/nbt.4314. 

55. Schapira M, Calabrese MF, Bullock AN. et al. Targeted protein 
degradation: Expanding the toolbox. Nat Rev Drug Discov 2019;18: 
949–63. https://doi.org/10.1038/s41573-019-0047-y. 

56. Chamberlain PP, Hamann LG. Development of targeted protein 
degradation therapeutics. Nat Chem Biol 2019;15:937–44. https:// 
doi.org/10.1038/s41589-019-0362-y. 

57. Zhao L, Zhao J, Zhong K. et al. Targeted protein degradation: 
Mechanisms, strategies and application. Signal Transduct Target 
Ther 2022;7:113. https://doi.org/10.1038/s41392-022-00966-4. 

58. Dale B, Cheng M, Park K-S. et al. Advancing targeted protein 
degradation for cancer therapy. Nat Rev Cancer 2021;21:638–54. 
https://doi.org/10.1038/s41568-021-00365-x. 

59. Samarasinghe KT, Crews CM. Targeted protein degradation: A 
promise for undruggable proteins. Cell Chem Biol 2021;28:934–51. 
https://doi.org/10.1016/j.chembiol.2021.04.011. 

60. Békés M, Langley DR, Crews CM. PROTAC targeted protein 
degraders: The past is prologue. Nat Rev Drug Discov 2022;21: 
181–200. https://doi.org/10.1038/s41573-021-00371-6. 

61. Dixon T, MacPherson D, Mostofian B. et al. Predicting the 
structural basis of targeted protein degradation by integrating 
molecular dynamics simulations with structural mass spec-
trometry. Nat Commun 2022;13:5884. https://doi.org/10.1038/ 
s41467-022-33575-4.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae519/7828723 by guest on 13 January 2025

https://doi.org/10.1038/ncomms10239
https://doi.org/10.1038/ncomms10239
https://doi.org/10.1038/ncomms10239
https://doi.org/10.1038/ncomms10239
https://doi.org/10.1093/nar/gkab408
https://doi.org/10.1093/nar/gkab408
https://doi.org/10.1093/nar/gkab408
https://doi.org/10.1093/nar/gkab408
https://doi.org/10.1093/nar/gkab408
https://doi.org/10.1007/978-1-4939-6406-2_6
https://doi.org/10.1093/nar/gku270
https://doi.org/10.1093/nar/gku270
https://doi.org/10.1093/nar/gku270
https://doi.org/10.1093/nar/gku270
https://doi.org/10.1093/nar/gku270
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1016/j.jgg.2017.03.007
https://doi.org/10.1016/j.jgg.2017.03.007
https://doi.org/10.1016/j.jgg.2017.03.007
https://doi.org/10.1016/j.jgg.2017.03.007
https://doi.org/10.1016/j.jgg.2017.03.007
https://doi.org/10.1093/bib/bbz169
https://doi.org/10.1093/bib/bbz169
https://doi.org/10.1093/bib/bbz169
https://doi.org/10.1093/bib/bbz169
https://doi.org/10.1093/bib/bbz169
https://doi.org/10.1016/j.gpb.2022.11.009
https://doi.org/10.1016/j.gpb.2022.11.009
https://doi.org/10.1016/j.gpb.2022.11.009
https://doi.org/10.1016/j.gpb.2022.11.009
https://doi.org/10.1016/j.gpb.2022.11.009
https://doi.org/10.1016/j.gpb.2020.01.001
https://doi.org/10.1016/j.gpb.2020.01.001
https://doi.org/10.1016/j.gpb.2020.01.001
https://doi.org/10.1016/j.gpb.2020.01.001
https://doi.org/10.1016/j.gpb.2020.01.001
https://doi.org/10.1371/journal.pcbi.1000376
https://doi.org/10.1371/journal.pcbi.1000376
https://doi.org/10.1371/journal.pcbi.1000376
https://doi.org/10.1371/journal.pcbi.1000376
https://doi.org/10.1371/journal.pcbi.1000376
https://doi.org/10.1186/1471-2105-7-170
https://doi.org/10.1186/1471-2105-7-170
https://doi.org/10.1186/1471-2105-7-170
https://doi.org/10.1186/s12859-019-3220-8
https://doi.org/10.1093/bioinformatics/btaa113
https://doi.org/10.1093/bioinformatics/btaa113
https://doi.org/10.1093/bioinformatics/btaa113
https://doi.org/10.1093/bioinformatics/btaa113
https://doi.org/10.1093/bioinformatics/btaa113
https://doi.org/10.1093/bioinformatics/btad031
https://doi.org/10.1093/bioinformatics/btad031
https://doi.org/10.1093/bioinformatics/btad031
https://doi.org/10.1093/bioinformatics/btad031
https://doi.org/10.1093/bioinformatics/btad031
https://doi.org/10.1093/bioinformatics/btu829
https://doi.org/10.1093/bioinformatics/btu829
https://doi.org/10.1093/bioinformatics/btu829
https://doi.org/10.1093/bioinformatics/btu829
https://doi.org/10.1093/bioinformatics/btu829
https://doi.org/10.1093/nar/gkw265
https://doi.org/10.1093/nar/gkw265
https://doi.org/10.1093/nar/gkw265
https://doi.org/10.1093/nar/gkw265
https://doi.org/10.1093/nar/gkw265
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/s41573-019-0047-y
https://doi.org/10.1038/s41573-019-0047-y
https://doi.org/10.1038/s41573-019-0047-y
https://doi.org/10.1038/s41573-019-0047-y
https://doi.org/10.1038/s41573-019-0047-y
https://doi.org/10.1038/s41589-019-0362-y
https://doi.org/10.1038/s41589-019-0362-y
https://doi.org/10.1038/s41589-019-0362-y
https://doi.org/10.1038/s41589-019-0362-y
https://doi.org/10.1038/s41589-019-0362-y
https://doi.org/10.1038/s41392-022-00966-4
https://doi.org/10.1038/s41392-022-00966-4
https://doi.org/10.1038/s41392-022-00966-4
https://doi.org/10.1038/s41392-022-00966-4
https://doi.org/10.1038/s41568-021-00365-x
https://doi.org/10.1038/s41568-021-00365-x
https://doi.org/10.1038/s41568-021-00365-x
https://doi.org/10.1038/s41568-021-00365-x
https://doi.org/10.1038/s41568-021-00365-x
https://doi.org/10.1016/j.chembiol.2021.04.011
https://doi.org/10.1016/j.chembiol.2021.04.011
https://doi.org/10.1016/j.chembiol.2021.04.011
https://doi.org/10.1016/j.chembiol.2021.04.011
https://doi.org/10.1016/j.chembiol.2021.04.011
https://doi.org/10.1038/s41573-021-00371-6
https://doi.org/10.1038/s41573-021-00371-6
https://doi.org/10.1038/s41573-021-00371-6
https://doi.org/10.1038/s41573-021-00371-6
https://doi.org/10.1038/s41467-022-33575-4
https://doi.org/10.1038/s41467-022-33575-4
https://doi.org/10.1038/s41467-022-33575-4
https://doi.org/10.1038/s41467-022-33575-4

	 MetaDegron: multimodal feature-integrated protein language model for predicting E3 ligase targeted   degrons
	Introduction
	Methods
	Results
	Discussion
	Key Points
	Supplementary data
	Funding
	Data availability


