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Abstract

As the most pervasive epigenetic marker present on mRNA and lncRNA, N6-methyladenosine (m6A) 

RNA methylation has been shown to participate in essential biological processes. Recent studies 

revealed the distinct patterns of m6A methylome across human tissues, and a major challenge remains 

in elucidating the tissue-specific presence and circuitry of m6A methylation. We present here a 

comprehensive online platform m6A-TSHub for unveiling the context-specific m6A methylation and 

genetic mutations that potentially regulate m6A epigenetic mark. m6A-TSHub consists of four core 

components, including (1) m6A-TSDB: a comprehensive database of 184,554 functionally annotated 

m6A sites derived from 23 human tissues and 499,369 m6A sites from 25 tumor conditions, 

respectively; (2) m6A-TSFinder: a web server for high-accuracy prediction of m6A methylation sites 

within a specific tissue from RNA sequences, which was constructed using multi-instance deep neural 

networks with gated attention; (3) m6A-TSVar: a web server for assessing the impact of genetic 

variants on tissue-specific m6A RNA modification; and (4) m6A-CAVar: a database of 587,983 TCGA 

cancer mutations (derived from 27 cancer types) that were predicted to affect m6A modifications in 

the primary tissue of cancers. The database should make a useful resource for studying the m6A 

methylome and genetic factor of epitranscriptome disturbance in a specific tissue (or cancer type). 

m6A-TSHub is accessible at: www.xjtlu.edu.cn/biologicalsciences/m6ats.

KEYWORDS: N6-methyladenosine (m6A); Context-specific analysis; Cancer mutations; Genome 

analysis; Functional annotation

Introduction

http://www.xjtlu.edu.cn/biologicalsciences/m6ats
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Among the more than 150 distinct chemical modifications naturally decorating cellular RNAs [1], N6-

methyladenosine (m6A) is the most pervasive marker present on mRNA and lncRNA, and has been 

associated with a number of essential biological functions and processes [2,3], including mRNA 

stability [4], splicing [5], translation [6,7], heat shock [8], DNA damage [9], and embryonic 

development [10]. Increasing evidence has indicated a critical role of m6A dysregulation in various 

human diseases, especially multiple cancers, such as breast cancer [11,12] and prostate cancer [13]. 

For example, inhibition of an m6A methyltransferase (METTL13) could be used as a potential 

therapeutic strategy against acute myeloid leukemia [14]. 

   Developed in 2012, m6A-seq (MeRIP-seq) was the first whole transcriptome m6A profiling approach 

[15,16]. It relies on antibody-based enrichment of the m6A signal, enabling the identification of m6A-

containing regions with a resolution of around 100 nt. Currently, m6A-seq is still the most popular m6A 

profiling approach and has been applied in more than 30 different organisms. Besides m6A-seq, recent 

advances in integration of Ultra Violet cross-linking, enzymatic activity and domain fusion have offered 

improved even base-resolution m6A detection through techniques such as, miCLIP/m6A-CLIP-seq 

[17,18], m6A-REF-seq [19] and DART-seq [20]. However, compared with m6A-seq, these approaches 

require more complicated experimental procedures and have therefore been applied in fewer 

biological contexts.

   To date, more than 120 computational approaches have been developed for the computational 

identification of RNA modifications [21,22] from the primary RNA sequences. These include the iRNA 

toolkits [23−31], MultiRM [32], DeepPromise [22], RNAm5CPred [33], SRAMP [11], Gene2vec [34], PEA 

[35], PPUS [36], WHISTLE [37], m5UPred [38], WeakRM frameworks [39,40], m6ABoost [41], PULSE 

[42], m6AmPred [43], BERMP [44], and MASS [45]. Together, these efforts have greatly advanced our 

understanding of multiple RNA modifications in different RNA regions and in various species (see 

recent reviews [22, 46−48]). A number of epitranscriptome databases have been constructed. 

MODOMICS collects the pathways related to more than 150 different RNA modifications [1]. RMBase 

[49], m5C-Atlas [50], and m6A-Atlas [51] assembled millions of experimentally validated m6A and m5C 

sites. REPIC was established as a comprehensive atlas for exploring the association between m6A RNA 

methylation and chromatin modifications [52]. ConsRM provides the conservation score of individual 

m6A sites at the base resolution, which can be used to differentiate the functionally important and 

‘passenger’ m6A sites [53]. m6A2Target compiled the target molecules of m6A methyltransferases, 

demethylases, and binding proteins [54]. This work has extended our knowledge of the functional 

epitranscriptome, and greatly facilitated relevant research. Special efforts have also been made to 

explore the effects of genetic variants on RNA modifications and their association with various 



4

diseases. m6AVar [55] was the first database that focused on the genetic factors related to 

epitranscriptome disturbance. It documented more than 400,000 m6A-affecting genetic variants, 

which were further labeled with disease and phenotype associations identified from genome-wide 

association studies (GWAS) analysis. This prediction framework was improved and later applied to 

eight other RNA modifications (m5C, m1A, m5U, Ψ, m6Am, m7G, and 2’-O-Me, and A-to-I) by RMVar 

[56] and RMDisease [57]. These above databases systematically revealed the general association 

between epitranscriptome layer dysregulation and various diseases (see a recent review [58]).

   Existing computational approaches for epitranscriptome analysis have been quite successful in 

providing a large quantity of useful information; however, most of them failed to consider the tissue-

specificity of m6A epi-transcriptome [59,60]. Indeed, a recent study by Liu et al. unveiled distinct 

tissue-specific signatures of the m6A epitranscriptome in human and mouse [61], which are induced 

by context-specific expression of m6A regulators (methyltransferases, demethylases, and RNA binding 

proteins) [62] and genetic drivers [63]. Nevertheless, most existing approaches for RNA modification 

site prediction completely ignore the context-specificity of the epitranscriptome and simply assume a 

single model for different tissues, undermining their accuracy and applicability. To the best of our 

knowledge, the only three approaches that clearly support the identification of tissue-specific m6A 

methylation are im6A-TS-CNN [64], iRNA-m6A [65], and TS-m6A-DL [66], all covering only three human 

tissue types (brain, liver, and heart). Similarly, when screening for the genetic variants that can affect 

RNA modifications, previous work assumes a consistent influence in different tissues (see Table S1 for 

a detailed description and comparison). However, since different epitranscriptome patterns were 

observed among different tissues, genetic mutations that can alter m6A methylation in one tissue may 

not necessarily function similarly in a different tissue. Likewise, there are significant differences in 

incidence, mortality and molecular signatures across cancer originating from different tissues [67,68]. 

It is therefore highly desirable to develop approaches that could take full advantage of the tissue-

specific RNA methylation profiles so as to make more reliable predictions with respect to a specific 

tissue type [69]. This is particularly critical for studying the epitranscriptome circuits of diseases that 

are explicitly associated with a specific tissue, such as, cancers.

To address this issue, we present here a comprehensive online platform m6A-TSHub for unveiling 

the context-specific m6A methylation and m6A-affecting mutations in 23 human tissues. m6A-TSHub 

consists of four core components, (1) m6A-TSDB: a database for 184,554 experimentally validated 

m6A-containing peaks (m6A sites) derived from 23 distinct human normal tissues and 499,369 m6A-

containing peaks (m6A sites) from 25 matched tumor conditions, extracted from 233 m6A-seq samples, 

respectively. (2) m6A-TSFinder: an integrated online server for the prediction of tissue-specific m6A 
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modifications in 23 human tissues, built upon a gated attention-based multi-instance deep neural 

network. (3) m6A-TSVar: a web server for systemically assessing the tissue-specific impact of genetic 

variants on m6A RNA modification in 23 human tissues. (4) m6A-CAVar: a database of 587,983 The 

Cancer Genome Atlas (TCGA) cancer mutations (derived from 27 cancer types) that may lead to the 

gain or loss of m6A sites in the corresponding cancer-originating tissues.

   In addition, the m6A-associated variants were also annotated with their potential post-

transcriptional regulatory roles, including RNA binding protein (RBP) binding regions, microRNA 

targets, and splicing sites, along with their known disease and phenotype linkage integrated from 

GWAS catalog [70] and ClinVar databases [71]. The m6A-TSHub is freely accessible at 

www.xjtlu.edu.cn/biologicalsciences/m6ats, and should be a useful resource for studying the m6A 

methylome and genetic basis of epitranscriptome disturbance with respect to a specific cancer type 

or tissue. The overall design of m6A-TSHub is shown in Figure 1.

Data collection and processing

Data resource (m6A-TSDB)

We collected the epitranscriptome profiles of 23 healthy human tissues, from which the tissue-specific 

RNA methylation patterns were learned using deep neural networks. Specifically, the raw sequencing 

data of 78 m6A-seq samples were downloaded directly from Gene Expression Omnibus (GEO) 

repository of National Center for Biotechnology Information (NCBI) [72] and National Genomics Data 

Center (NGDC) [73] (Table S2). Adaptors and low-quality nucleotides were removed by Trim Galore 

[74], followed by quality control using FastQC. The processed reads were then aligned to the reference 

genome GRCh37/hg19 by HISAT2 [75]. The m6A enriched regions (peaks) located on transcripts were 

detected by exomePeak2 [76] using its default setting with GC contents corrected. In total, m6A 

profiling samples from 23 healthy human tissues (184,554 m6A-containing peaks) were processed. We 

filtered all obtained m6A enriched regions to retain peaks with at least one DRACH consensus motif 

and used these peak regions containing tissue-specific m6A signals as positive data. Negative data was 

randomly collected from non-peak regions located on the same transcript of the corresponding 

positive data, and cropped to balance the length and number between positive and negative regions 

(with a positive to negative ratio of 1:1). The genomic sequences of both positive and negative regions 

were then extracted for developing the tissue-specific m6A prediction model.

   To evaluate the effect of cancer somatic variants on m6A methylation in their originating tissues, a 

total of 2,587,191 cancer somatic variants from 27 different cancer types were obtained from TCGA 

http://www.xjtlu.edu.cn/biologicalsciences/m6ats
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(release version v27.0-fix) [77] (Table S3). Meanwhile, 155 m6A-seq samples profiling the 

epitranscriptome (499,369 m6A-containing peaks) of 25 cancer cell lines (corresponding to 17 tissue 

types) were also obtained using the same data processing pipeline (Table S2), which were used for the 

validation of the predicted effects on m6A methylation of the variants (detailed in the following).  

Learning tissue-specific m6A methylation with deep neural networks (m6A-TSFinder)

The purpose of weakly supervised learning is to develop predictive models by learning from weakly 

labeled data, such as m6A peaks of low resolution detected by the m6A-seq (or MeRIP-seq) technique 

[15,16]. Unlike supervised learning based on single-nucleotide resolution data, it works for the case 

where only coarse-grained labels (indicating whether a genome bin contains an m6A site) are available 

for these peaks of various lengths. We previously proposed a general weakly supervised learning 

framework WeakRM [78], which takes labels at the sequence level (rather than a nucleotide level) as 

input and predicts the sub-regions that are most likely to contain the RNA modification. As a simplified 

illustration shown in Figure 2, the m6A-TSFinder framework is divided into several sub-sections. 

Firstly, multi-instance learning treats each entire RNA sequence as a ‘bag’, with multiple ‘instances’ 

within the ‘bag’ determined by a fixed-length sliding window. Previous studies have shown that a 

40−50 nt context region is sufficient for modification predictions. Therefore, in m6A-TSFinder, a sliding 

window of 50 nt was used, which was also helpful in improving the prediction resolution. Secondly, 

the RNA instances were fed into the m6A-TSFinder model using one-hot encoding, which is widely 

used in deep learning-based models. The extracted instances pass through the same feature 

extraction module (the weights of the network are shared in this module) and output instance-level 

features. The network architecture of the feature extraction section used in m6A-TSFinder includes 

the first convolutional layer to capture motifs, a max-pooling layer to remove weak features and 

enlarge the receptive field, a dropout layer that prevents overfitting in training, and a second 

convolutional layer which learns local dependencies among motifs. In order to further improve the 

performance of the model, in m6A-TSFinder, we use a long short-term memory (LSTM) layer to replace 

the second convolutional layer, so that the model can learn the long-range dependence of the motif 

while maintaining local dependence. Lastly, gated attention was used as the score function to obtain 

bag-level probabilities from multiple instance-level features. The gated attention module consists of 

three fully connected layers. The first two layers learn hidden representations from the instance 

features using tanh and sigmoid activation functions. Their element-wise multiplication is then sent 

to the third fully connected layer, which learns the similarity between the product and a context 

feature vector and outputs an attention score for each instance. The score is further normalized using 
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the softmax function, so that the weights of all instances add up to 1. The weighted summation of 

instance features is treated as the bag-level feature and used to output the final probability score. 

Together, our model can be trained end-to-end using the binary cross-entropy loss calculated by the 

bag-level label. Our model was trained using the Adam optimizer under the Tensorflow framework. 

The learning rate was initially set to 1E−4, and gradually decayed to 1E−5 during the training process 

of 20 epochs. It is worth mentioning that when the number of instances is consistently set to 1, the 

weight of the instance is always 1, and the label becomes the instance level. In that case, the gated 

attention module is degraded, and the network becomes a strong supervised learning framework with 

two feature extraction layers.

Decoding the tissue-specific effect of variants on m6A methylation (m6A-TSVar & m6A-CAVar)

Similar to previous studies [55,56,79,80], a cancer somatic variant is defined as a tissue-specific m6A 

variant if it could lead to the gain or loss of m6A methylation in a specific tissue. The tissue-specific 

inference was made possible by our deep neural network model m6A-TSFinder. Specifically, the 

predicted tissue-specific m6A variants were further classified into three confidence levels − low, 

medium, and high (Figure 3). 

Low confidence level

An m6A-associated variant with a low confidence level was defined directly by the tissue-specific 

prediction model. For example, a synonymous somatic variant (Chr5:92929473, positive strand, C>T, 

TCGA barcode: TCGA-49-6742-01A-11D-1855-08) was extracted from The Cancer Genome Atlas Lung 

Adenocarcinoma (TCGA-LUAD) project, which was then predicted to eliminate the methylation of an 

experimentally validated m6A-containing region (Chr5:92929314−92929786, positive strand) 

originally detected in human lung tissue [61].

Medium confidence level

The m6A variants in medium confidence level are those that can be verified on available 

epitranscriptome data from cancer samples originating from the matched tissue. Following the low 

confidence level mentioned above, by checking the m6A-containing regions reported in lung 

adenocarcinoma cancer cell line A549 [81] and H1299 [82], we confirmed that no m6A peaks were 

further observed in A549 and H1299 for the variant-affected region (Chr5:112176059−112176334, 
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positive strand). Consequently, this LUAD somatic variant was upgraded to a ‘medium’ confidence 

level in the m6A-CAVar database. It is worth noting that the predicted m6A dynamics in m6A-CAVar 

were systematically validated using available epitranscriptome datasets from the matched healthy 

and cancer samples, providing another layer of quality assurance from real omics datasets: existing 

approaches only use those datasets to provide the m6A site information without searching for 

potential evidence of m6A status switching.

High confidence level

Only a very small number of variants have been clearly associated with diseases and phenotypes 

unveiled from GWAS analysis, and are known as disease-TagSNPs. These variants exhibited their 

clinical significance and are very likely to be functionally important. Thus, m6A variants of ‘high’ 

confidence level were defined as the validated m6A variants that can also be mapped to disease-

TagSNPs extracted from ClinVar [71] and GWAS catalog [70], while those not validated were referred 

to as ‘critical’.

   Additionally, the association level (AL) between an SNP and m6A RNA modification was defined as 

follows: 

 (1)
 
 

2 2max 0.5, for gain
AL

2 2max 0.5, for loss
   

SNP WT

WT SNP

P P
P P

where  and  represent the probability of m6A RNA modification for the wild-type and W TP S N PP

mutated sequences, respectively. The AL ranges from 0 to 1, with 1 indicating the maximum impact 

on m6A methylation. The statistical significance was assessed by comparing the ALs of all mutations, 

with which the upper bound of the P value can be calculated from its absolute ranking. The m6A-

associated variants with AL > 0.4 and P < 0.1 were retained. We also considered the possibility of a 

variant destroying a part of (but not an entire) m6A peak. For peaks wider than 500 nt, the impacts 

were also evaluated on the 200 nt flanking regions of the variant. 

   The predicted m6A variants were then validated on the epitranscriptome datasets from the matched 

health and cancer samples. We consider a prediction validated by omic data if the matched dynamics 

of m6A sites were observed under the healthy tissue and the cancer samples with the same tissue 

origin. It may be worth noting that, omic data was only used to inform the prediction of m6A sites in 

previous studies [55,56,79,80]; however, our analysis also relies on it to confirm the predicted 
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disturbance of m6A status between the health and cancer conditions. This extra layer of confirmation 

directly from available omic datasets should effectively enhance the reliability of our database.

Functional annotation

The identified m6A variants were annotated with various information, including transcript region 

(coding sequence, three prime untranslated region, five prime untranslated region, start codon, and 

stop codon), gene annotation (gene symbol, gene type, and Ensembl gene ID), evolutionary 

conservation (phastCons 60-way), deleterious level by SIFT [83], PolyPhen2 HVAR [84], 

PolyPhen2HDIV [84], LRT [85] and FATHMM [86] using the ANNOVAR package [87], absolute ranking 

by comparing to the ALs of all mutations (top 1% and top 5%), and TCGA sample information (TCGA 

case ID, TCGA barcode, TCGA sample count, and sample total variant number). A total of 177,998 high-

confidence m6A sites detected using base-resolution technology previously were collected and used 

to pinpoint the precise location of the mediated m6A sites within the variant-affected regions (Table 

S4). In addition, aspects of the post-transcriptional machinery that can be mediated by m6A 

methylation were also annotated, including RBP binding regions from POSTAR2 [88], miRNA-RNA 

interaction from miRanda [89] and starBase2 [90], and splicing sites from UCSC [91] annotation with 

GT-AG role. Furthermore, to unveil potentially related pathogenesis, any association between disease 

and m6A variants was extracted from the GWAS catalog [70] and ClinVar [71] databases. 

Database and web interface implementation

Hyper text markup language (HTML), cascading style sheets (CSS), and hypertext preprocessor (PHP) 

were applied to construct the m6A-TSHub web interface. All metadata was stored using MySQL tables. 

Besides, EChars was exploited to present statistical diagrams, and the Jbrowse genome browser [92] 

was included for interactive exploration and visualization of relevant records for genome regions of 

interest.

Database content and usage

Collection of m6A sites from 23 normal human tissues and 25 cancer cell lines in m6A-TSDB

In m6A-TSDB, a total of 184,554 and 499,369 m6A-containing peaks were collected from 23 normal 

human tissues and 25 cancer samples, respectively. Among them, 17 out of 25 tumor samples have 
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the m6A profiles of their matched primary tissues. The m6A enriched peaks were called using 

exomePeak2 [76] with GC-correction function after mapping the processed reads to human reference 

genome version hg19. It is worth mentioning that, for a more complete m6A epitranscriptome 

landscape view, a total of 177,998 base-resolution m6A sites collected from 27 datasets using six 

different m6A profiling techniques were integrated and used to pinpoint the precise location of the 

mediated m6A sites within all tissue-specific m6A peaks (Table S4). In addition, all m6A-containing 

peaks were labeled with information showing whether these sites were affected by cancer somatic 

variants and potential involved post-transcriptional regulations. All data collected in the m6A-TSDB 

can be freely downloaded or shared.

Performance evaluation and model interpretation of tissue-specific m6A site prediction m6A-

TSFinder 

The performance of tissue-specific m6A site predictors was evaluated using 10-fold cross-validation 

and independent testing. For each distinct human tissue, we randomly selected 15% of experimentally 

validated m6A sites and used them as an independent testing dataset. For 10-fold cross-validation, the 

training data was randomly divided into 10 groups with the same number of positive and negative 

peaks. The prediction performance of each tissue-specific predictor is shown in Table 1. In general, 

the prediction accuracy for most tissues (20 out of the total 23 tissues) is in line with conventional 

approaches for m6A site prediction under strong supervision with base-resolution datasets, which 

typically reported a prediction performance between 0.8 and 0.85 in terms of the area under ROC 

curve (AUROC) [22,93]. The performance for kidney (AUROC = 0.718), bone marrow (AUROC = 0.757) 

and brainstem (AUROC = 0.789) was somewhat worse, but the reasons are not very clear. In addition, 

in order to find the recurring sequence patterns preferred by each tissue-specific m6A prediction 

model, we further divided the peaks into instances of length (l = 50) and extracted the consensus 

motifs from instances with predicted values higher than 0.5 using integrated gradient and TF-Modisco, 

under each tissue model, respectively. By trimming the overall letter frequencies with three gaps and 

two mismatches allowed, we identified one consistence motif under all tissue models (Figure S1), 

which was matched to the known m6A consensus motif DRACH. Please refer to Figure S1 for details.

Performance compared with existing approaches

We further compared the performance of the proposed m6A-TSFinder with existing m6A predictors 

specifically targeted at the tissue level. Dao et al. previously developed an Support Vector Machine 
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(SVM)-based model (iRNA-m6A) for m6A identification in the human brain, liver, and kidney [65]. Later, 

im6A-TS-CNN [64] and TS-m6A-DL [66] further improved prediction performance by applying a 

convolutional neural network, using the same training and testing datasets provided in Dao’s work. It 

is worth mentioning that the training and testing datasets used in their work contain positive and 

negative sequences fixed to 41 nt length with m6A sites or unmethylated adenosines in the center. 

These models learn to capture discriminative sequence patterns at positions a fixed distance from the 

target adenosine. When making predictions, the well-trained models take the centered adenosine and 

its surrounding sequences and return the probability that the central adenosine is methylated. When 

only low-resolution data are available, sequence lengths vary from 100 nt to hundreds, and 

methylation is not fixed at the center of the sequence. Therefore, the pre-set requirements of these 

base-resolution models (TS-m6A-DL, im6A-TS-CNN, and iRNA-m6A) cannot be fulfilled, making it 

difficult to fairly evaluate their performance on low-resolution data. Furthermore, the only three 

tissue-specific base-resolution datasets originate from m6A-REF-seq, which can only detect m6A in 

NNACA, whereas the 23 low-resolution considered in this work contain m6A from broader sequence 

contexts. Inconsistencies between data further limit direct comparisons between models. 

Nevertheless, we apply m6A-TSFinder to the same training and testing datasets of the three base-

resolution models to show performance and fair comparisons when base-resolution data is available. 

Specifically, as described in the data collection and processing section, the prediction of m6A from 

fixed-length sequences centered at the target site can be considered a special case of m6A-TSFinder, 

where each input sequence is treated as a single instance. As shown in Table 2, when tested on the 

independent dataset, m6A-TSFinder outperformed the three competing methods in two of the three 

tissues tested (brain and liver) and achieved the best average performance (AUROC of 0.8593). The 

improvement may be due to the application of the LSTM layer after the convolutional layer, which 

enables the model to learn the long-range dependencies between the motifs. In addition, by learning 

from the low-resolution datasets, we expanded the human tissues supported from 3 to 23, which 

could significantly facilitate future research focusing on the dynamics of m6A methylome across 

different tissues.

Assessing the impact of genetic variants on tissue-specific m6A sites by m6A-TSVar

The m6A-TSVar web server was designed to assess the impact of genetic variants on tissue-specific 

m6A RNA methylation using deep neural networks. The collected experimentally validated m6A peaks 

from 23 human tissues were integrated. The changes in the probability of m6A methylation affected 

by mutations were calculated, with the returned value of AL indicating how extreme the impact on 
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m6A methylation was. To our best knowledge, the m6A-TSVar is the first web server for exploring m6A-

affecting variants within a specific tissue by integrating the tissue-specific m6A patterns.

Screening for cancer variants that affect m6A in their primary tissues in m6A-CAVar

In m6A-CAVar, the cancer somatic variants from 27 TCGA projects were extracted. Their impacts on 

m6A RNA modification in the corresponding 23 healthy human tissues were evaluated and then 

systematically validated using 17 paired normal and tumor samples. A total of 587,983 cancer somatic 

variants were predicted to affect the m6A methylation status in their originating tissues (the ‘low’ 

confidence level group). Among them, the dynamic m6A status induced by 122,473 variants was 

observed on the available epitranscriptome profiles (the ‘medium’ confidence level group), and 1718 

confirmed m6A-variants were known to be associated with diseases and other phenotypes from GWAS 

analysis (the ‘high’ confidence level group) (Table 3). Please refer to data collection and processing for 

more details related to the definition of different confidence groups.

Deciphering the tissue-specificity of cancer m6A variants 

Of interest is whether m6A variants function in different cancer-originating tissues. For this purpose, 

we calculated the proportion of m6A variants that function in different numbers of tissues, and the 

results suggested that most m6A-associated cancer variants are tissue- and cancer-specific (93.25%), 

while only around 1.17% are functional in the originating tissues of more than three types of cancers 

(Figure 4A). The consistency is much higher at the gene level. Only around 16.59% of m6A variant 

carrying genes are associated with a single tissue. More than 60.29% were shared in more than three 

tissue types (Figure 4B), suggesting some common epitranscriptome layer circuitry at the gene level 

in different cancers. We further examined the proportion of shared m6A variant-carrying genes 

between two different tissues. As shown in Figure 4C, most tissues, e.g., skin and stomach, strongly 

correlate with each other. However, tissues like the heart, testis, and thyroid showed a rather weak 

association with other tissues, which may suggest more tissue-specific epitranscriptome circuitry for 

cancers originating in those tissues.

   We finally identified the m6A variant-carrying genes that are associated with the most TCGA cancer 

types. Only experimentally validated m6A variants (medium confidence level and above) were 

considered here for a more reliable analysis. Top of the list was CENPF, where variants may change its 

m6A methylation status in the primary tissue of 15 cancer types, followed by DST, MKI67, and PLEC, 
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which were all related to 14 cancer types (detailed in Table S5). Among them, the roles in 

epitranscriptome regulation of CENPF, MKI67, and PLEC have been indicated previously in 

glioblastoma [94], breast cancer [95], and pancreatic cancer [96], respectively.

Enhanced web interface and application

The m6A-TSHub features a user-friendly web interface with multiple useful functions, including 

databases and online servers, which enable users to fast query databases, upload their own custom 

jobs, and download all m6A-related information at the tissue level. The collected functional m6A-

affecting variants can be queried by a human body diagram according to their primary tissues (Figure 

5A), as well as by different cancer types along with further filters (e.g., gene type, m6A status, 

confidence level, and disease association; Figure 5B). The query function also returns several 

categories of useful information, including TCGA project names [77], tumor-growth tissues, genes, 

chromosome regions, COSMIC ID [97], and disease phenotypes (Figure 5C). The details of tissue-

specific m6A peaks collected in m6A-TSDB (Figure 5D) and cancer m6A-associated variants in m6A-

CAVar (Figure 5E) can be viewed by clicking the site or variant ID, along with annotated disease-

association regulations (Figure 5F). Furthermore, online servers allow for the identification of m6A 

sites and m6A-associated variants within user-defined regions, with 23 types of human tissues to be 

selected (Figure 5G and H). A genome browser is available for interactive exploration of the genome 

regions of interest, including the human gene annotation track, 23 normal tissue tracks, 25 cancer cell 

line tracks, single-base m6A epitranscriptome landscape track, and post-transcriptional regulation 

tracks. All metadata provided in the m6A-TSHub can be freely downloaded, alone with server scripts 

provided to run the prediction tools locally (required language: R and Python). Users can refer to the 

‘help’ and ‘download’ page for more detailed guidance and instructions. 

Utility case study 1: PIK3CA variant in colon cancer

Previous studies have reported that m6A RNA modification plays an important role in colon cancer 

[61,98−100]. The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) project [77] presented 

a large number of somatic variants identified from various colon adenocarcinoma samples. However, 

it is still unclear which single genetic variant may lead to m6A dysregulation. In m6A-CAVar, a somatic 

variant at Chr3: 178952085 (A > T) on PIK3CA identified from TCGA-COAD project (TCGA barcode: 

TCGA-AA3821-01A-01W-0995-10) was predicted to erase the m6A methylation of a region (Chr3: 

178951888−178952363, positive strand). The m6A methylation was observed in healthy human colon, 
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but disappeared in the colon adenocarcinoma cancer cell line HCT116 [101]. This somatic variant is 

also recorded in the COSMIC database from colon tumor samples under the legacy identifier of 

COSM776, and reported to be associated with 27 submitted interpretations and evidence in the 

ClinVar database [71], including PIK3CA-related overgrowth spectrum (ClinVar accession: 

RCV000201235.1), breast adenocarcinoma (ClinVar accession: RCV000014629.5), and pancreatic 

adenocarcinoma (ClinVar accession: RCV000417557.1). Taken together, these observations strongly 

support the functional importance of this variant. Additionally, the m6A-associated variant falls within 

the binding regions of two RNA binding proteins (TARDBP and NUDT21), whose interaction may be 

regulated by the loss of m6A methylation in the cancer condition, providing some putative 

downstream regulatory consequences of the variant. 

Utility case study 2: PLEC variant in glioblastoma

Glioblastoma (GBM) is the most aggressive type of brain tumor and is associated with rising mortality. 

The roles of m6A regulators in this disease have been previously indicated [102−105]. A somatic cancer 

variant on PLEC was identified from the TCGA-GBM project (TCGA barcode: TCGA-06-5416-01A-01D-

1486-08) at Chr8: 144991388 (C > T). This cancer variant was predicted to lead to a gain of an m6A site 

on a previously un-methylated region in a healthy human cerebrum. Indeed, an m6A site was detected 

in this region from malignant GBM tumor cell line U-251. This mutation has a record in ClinVar 

database (ClinVar accession: RCV000177727.1). Screening for potential post-transcriptional 

regulations revealed that the cancer variant falls within the target binding regions of six RNA binding 

proteins, including the m6A reader YTHDF1, which are known to bind m6A-containing RNAs and 

promote cancer stem cell properties of GBM cells [106]. It should be of immediate interest to ask 

whether the methylation of PLEC regulates its interaction with YTHDF1 and other RBPs, and what the 

functional consequences are.

Utility case study 3: EGFR variant in lung cancer

The associations between m6A RNA modification and human lung cancers have been well studied. The 

m6A eraser FTO may be a prognostic factor in The Cancer Genome Atlas Lung Squamous Cell 

Carcinoma (TCGA-LUSC) [107], and the m6A writer METTL3 regulates EGFR expression to promote cell 

invasion of human lung cancer cells [82]. The m6A-CAVar database can be used to explore the role of 

m6A variants of EGFR in lung cancers. We first search by gene name ‘EGFR’ on the front page of the 

m6A-CAVar database, then filter the results and keep only records related to lung tissue, which retains 
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a total of 10 cancer m6A-associated variants from two lung cancer types (Figure 6A and B). 

Alternatively, the users can query all recorded m6A-associated variants that function in lung tissue by 

simply clicking the relevant part from the human body diagram (Figure 6C). More details can be 

accessed by clicking the variant ID. For example, if we check further details of an m6A-gain variant 

from the TCGA-LUAD project at Chr7: 55259515 (T > G), we can see that this variant is recorded in the 

ClinVar database and is relevant to eight disease conditions, including lung cancers (Figure 6D), which 

may suggest potential cancer pathogenesis originates in the epitranscriptome layer.

Discussion and perspectives

The context-specific expressions and functions of m6A regulations have been repeatedly reported in 

existing studies [59−63], suggesting the involvement of the tissue-specific m6A methylome in essential 

biological processes and multiple disease mechanisms. Besides, the associations between RNA 

methylation levels and the activities of RNA methylation regulators were clearly unveiled, reporting 

that there exist some condition-specific RNA co-methylation patterns (a group of RNA m6A 

methylation sites whose methylation levels go up and down together) [108−110]. These co-

methylation patterns are enriched by the substrate targets of m6A regulators and thus are probably 

regulated by specific m6A methyltransferase or demethylase.

   Here we present m6A-TSHub, a comprehensive online platform for unveiling the context-specific 

m6A methylation and m6A-affecting mutations in 23 human tissues and 25 tumor conditions. In m6A-

TSHub, a total of 184,554 and 499,369 m6A sites derived from 23 normal human tissues and 25 

matched tumor samples were collected (m6A-TSDB), from which some potential patterns for the 

tissue-specific m6A modification sites were revealed (e.g., heart-enriched gene RYR2 and PXDNL; 

Figure S2). Based on these collected data, 23 distinct m6A prediction models were built at the tissue 

level using deep neural networks (m6A-TSFinder). In addition, to elucidate the genetic factor of 

epitranscriptome dysregulation, m6A-CAVar identified a total of 587,983 cancer somatic mutations 

that may alter the m6A status in corresponding cancer originating tissues and annotated them with 

various functional annotations, including features relating to post-transcriptional regulations (RBP 

binding regions, microRNA targets, and splicing sites), disease and phenotype association, as well as 

other useful genomic information (transcript structure, phastCons, and deleterious level) to provide a 

more comprehensive overview. We also provide a web server m6A-TSVar for assessing the effect of 

genetic variants on m6A methylation in a specific tissue.
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   While most of the existing approaches for RNA modification site prediction ignore the tissue-specific 

signatures of m6A methylation, by taking advantage of existing tissue-specific epitranscriptome data, 

our method can predict the m6A methylation within a specific tissue. Compared with existing 

approaches for tissue-specific m6A methylation site prediction [64−66], our approach m6A-TSFinder 

achieved a higher prediction performance (Table 2) and hugely expanded the number of supported 

tissue types from 3 to 23 (Table 1).

   Compared with existing approaches for decoding the epitranscriptome impact of genetic variants, 

m6A-CAVar has the following two major advantages. First, m6A-CAVar relies on a finer prediction 

model (m6A-TSFinder) that appreciates the specific pattern of RNA methylomes across different 

tissues. By directly learning from the epitranscriptome profiles in 23 healthy human tissues, m6A-

CAVar is able to evaluate the tissue-specific impact of cancer somatic variants on m6A modification in 

their originating tissue, providing a more detailed picture of the genome-epitranscriptome 

association. This improves on existing approaches that ignore the distinct signatures of RNA 

methylation across different tissues and thus fail to address tissue-specific effects. Second, the 

predicted m6A dynamics in m6A-CAVar were systematically validated using available epitranscriptome 

datasets from the matched healthy and cancerous samples, providing another layer of quality 

assurance from real omics datasets. In contrast, existing approaches use those datasets only to 

provide the m6A site information without searching for potential evidence of m6A status switching. 

   To date, epitranscriptome data is still rather scarce. Due to the limited availability of datasets, 

matched healthy tissue and cancer m6A profiling samples are only available for 14 out of the total 27 

cancer types, prohibiting a more thorough validation of the predicted results. Furthermore, a 

substantial discrepancy has been observed among different RNA modification profiling approaches 

due to technical biases [111−114], which can produce additional inaccuracy. Currently, context-

specific epitranscriptome prediction is only possible for a small number of conditions (cell line, tissue 

type, treatment) with data [64−66]. However, the m6A-TSHub framework will be further expanded 

when epitranscriptome datasets are more abundantly available for more comprehensive and less 

biased screening of context-specific m6A-variants, along with linking the tissue-specific 

epitranscriptome patterns with other important cancer-associated factors such as human aging 

[67,115]. Besides, the current version of m6A-TSHub was built on human genome assemble hg19. A 

LiftOver file from hg19 to hg38 was provided on the ‘download’ page, and the next version of the 

database will be updated based on the latest genome assembly. Particularly promising is the recent 

development in Nanopore direct RNA sequencing technology that enables simultaneous identification 

of multiple RNA modifications with simplified sample preparation procedures [116−124]. 
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Data availability 

The data underlying this article are available via www.xjtlu.edu.cn/biologicalsciences/m6ats. The 
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www.xjtlu.edu.cn/biologicalsciences/m6ats by clicking the ‘tool’ section. The local version and project 

codes can be accessed on the ‘download’ page.  
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Figure legends

Figure 1  The overall design of m6A-TSHub

By integrating 184,554 m6A sites detected from 23 different healthy human tissues (m6A-TSDB), a 

deep learning framework that learns tissue-specific RNA methylation patterns was developed (m6A-

TSFinder). The effect of genetic variants on tissue-specific m6A sites was then evaluated (m6A-TSVar). 

A total of 587,983 cancer somatic mutations were predicted to be able to affect m6A methylation of 

RNA in their corresponding cancer-originating tissues. The predicted m6A-affecting SNPs were then 

systematically validated using available cancer epitranscriptome datasets, and then functionally 

annotated with disease and phenotype association from GWAS, along with features relating to the 

post-transcriptional machinery (microRNA target sites, splicing sites, and RNA binding protein binding 

sites) that are potentially mediated by m6A modification (m6A-CAVar). A web interface was 

constructed to enable the exploration, query, online analysis, and download of relevant results and 

data. GWAS, genome-wide association study. RBP, RNA binding protein.
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Figure 2  A simplified graphic illustration of the proposed m6A-TSFinder framework

Figure 3  Workflow of how to determine the confidence level of m6A variants

Three types of confidence levels were applied. The cancer-driving somatic variants were extracted 

from TCGA-projects, and mapped to the m6A profiling samples derived from corresponding tumor-

growth tissues. A tissue-specific weakly supervised model was then applied to obtain m6A-associated 

variants labeled in low confidence level. m6A profiling samples from tumor-growth tissues were then 

used for validation of the prediction results, and the validated portion was classified into medium 

confidence level. Lastly, all variants with medium confidence level were annotated with disease 

information from ClinVar and GWAS, and then classified into the high confidence group. Lung tissue, 

healthy and cancerous, is used as an example here. The same protocol was followed for all 23 tissues. 

GWAS, genome-wide association study.

Figure 4  Tissue-specificity of cancer m6A variants 

A. The proportion of m6A variants that are shared among different tissues. Most m6A-associated 

variants (93.25%) were identified in only 1 tissue, with 3.86%, 1.7%, and 1.17% identified in 2, 3, and 

more than 3 tissues, respectively. B. The proportion of m6A variant-carrying genes shared among 

tissues. The consistency is much higher at the gene level. Most m6A variants-carrying genes are shared 

among multiple tissues, with only 16.59% associated to one tissue type. C. The pairwise association of 

tissues in terms of proportion of shared m6A variant carrying genes. Most tissues are significantly 

correlated. The exceptions are heart, adrenal gland, lymph nodes, bone marrow, testis, and thyroid.

Figure 5  Enhanced web interface 

A. A human body diagram is available for querying cancer somatic m6A-associated variants in their 

originating tissues. B. Users can query the associated variants by cancer type. C. Users can also query 

the associated variants disease, region, gene symbol, COSMIC and Rs ID, and further filter the returned 

results. D. Details of tissue-specific m6A peaks collected in m6A-TSDB. E. Details of cancer-related m6A-

associated variants. F. Details of disease annotation involved. G. The online-tools provided for analysis 
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of user-uploaded files, including assessing m6A-associated variants in tissues (m6A-TSVar). H. The 

online-tool for identifying tissue-specific m6A sites (m6A-TSFinder).

Figure 6  Case study on gene EGFR

A. Searching for the gene ‘EGFR’ in m6A-CAVar database returns a total of 10 m6A variants identified 

in two lung cancer types, the details of which can be viewed by clicking the m6A-CAVar ID. B. Users 

can further filter the search results in specific cancer types. C. A human body map is provided on the 

front page of m6A-CAVar website, which enables quick positioning of cancer m6A-associated variants 

functions at a specific tissue. D. The disease and phenotype association of recorded m6A variant.

Tables

Table 1  Performance evaluation of tissue-specific m6A model 

Table 2  Performance comparison between m6A-TSFinder and competing approaches on 

independent dataset (AUROC)

Table 3  Tissue-specific m6A cancer variants collected in m6A-CAVar

Supplementary material

Figure S1  Motif captured under each tissue-specific m6A prediction model

The consensus motifs from instances with higher than average weights were extracted using TF-

MoDISco, under each tissue model, respectively. To sum up, we identified one consistence motif 

GGACU under all tissue models, which was matched to the known m6A consensus motif DRACH.
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Figure S2  m6A patterns captured under specific human gene

A. human gene RYR2 encodes a ryanodine receptor found in cardiac muscle sarcoplasmic reticulum, 

this gene was biased expressed in heart and brain. We found three m6A sites located on gene RYR2 

from heart samples, compared with two m6A sites from brain, one from liver, one from ovary, and 

one from uterus, respectively. B. for human gene PXDNL (biased expression in heart), we observed 

only one tissue-specific m6A sites from heart sample. C. and D. human gene HMGCS2 and C6 were 

both reported to be biased expressed in liver. We found one m6A peak located on gene HMGCS2 and 

gene C6, respectively, identified from human liver sample. 

Table S1  Distinct features of m6A-TSHub compared with existing resources

Table S2  m6A-seq samples

Table S3  TCGA sources

Table S4  Single-based samples

Table S5  Gene-TCGA associations
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Table 1  Performance evaluation of tissue-specific m6A model 

10-fold cross-validation Independent testing
Tissue type

Accuracy Precision MCC AUROC Accuracy Precision MCC AUROC

Lung 0.764 0.835 0.536 0.843 0.775 0.761 0.55 0.853

Bladder 0.758 0.760 0.517 0.836 0.766 0.750 0.532 0.848

Colon 0.740 0.770 0.482 0.810 0.744 0.730 0.490 0.810

Lymph nodes 0.771 0.797 0.544 0.844 0.78 0.735 0.570 0.844

Cerebrum 0.745 0.799 0.495 0.827 0.758 0.768 0.515 0.834

Cerebellum 0.715 0.718 0.432 0.798 0.72 0.731 0.441 0.801

Hypothalamus 0.733 0.724 0.467 0.799 0.746 0.74 0.493 0.811

Brainstem 0.727 0.742 0.454 0.764 0.721 0.713 0.443 0.789

Kidney 0.685 0.694 0.369 0.755 0.647 0.628 0.297 0.718

Bone marrow 0.694 0.634 0.391 0.757 0.698 0.721 0.397 0.757

Liver 0.742 0.747 0.484 0.805 0.737 0.717 0.476 0.803

Ovary 0.730 0.710 0.464 0.814 0.726 0.722 0.453 0.812

Prostate 0.752 0.779 0.507 0.819 0.759 0.736 0.521 0.830

Soft tissues 0.766 0.855 0.544 0.855 0.771 0.775 0.543 0.858

Skin 0.750 0.850 0.511 0.835 0.773 0.753 0.547 0.857

Stomach 0.772 0.820 0.549 0.852 0.77 0.764 0.539 0.848

Corpus uteri 0.722 0.656 0.452 0.813 0.734 0.715 0.470 0.822

Adrenal gland 0.737 0.771 0.474 0.804 0.741 0.716 0.485 0.817

Heart 0.778 0.824 0.558 0.854 0.772 0.759 0.546 0.846

Rectum 0.747 0.725 0.496 0.826 0.767 0.747 0.536 0.828

Testis 0.743 0.770 0.489 0.810 0.731 0.734 0.463 0.804

Thyroid gland 0.765 0.805 0.533 0.845 0.753 0.733 0.509 0.830

Pancreas 0.761 0.770 0.523 0.838 0.751 0.739 0.502 0.834

Note: MCC, matthews correlation coefficient; AUROC, the area under ROC curve. 
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Table 2  Performance comparison between m6A-TSFinder and competing approaches on independent 

dataset (AUROC)

Performance on independent dataset

m6A-TSFinder TS-m6A-DL im6A-TS-CNN iRNA-m6A

Brain 0.8132 0.8097 0.8056 0.7845

Liver 0.8850 0.8784 0.8805 0.8681

Kidney 0.8796 0.8802 0.8727 0.8565

Average 0.8593 0.8561 0.8529 0.8364

Note: For a fair comparison, the m6A-TSFinder was rebuilt for human brain, liver, and kidney, using the same 

training and testing datasets applied in the three previous works. The 41nt sequences were considered as one 

instance and fed into m6A-TSFinder. 

Table 3  Tissue-specific m6A cancer variants collected in m6A-CAVar

Classification
Cancer type Primary tissue Matched cancer 

cell line
Variant 
type Low Middle Hig

h
Total

Gain 27,845 6526 30 34,401Lung adenocarcinoma
(TCGA-LUAD)

Lung A549, H1299
Loss 1233 1391 2 2626
Gain 25,508 3702 13 29,223Bladder urothelial 

carcinoma (TCGA-BLCA)
Urinary bladder BCa5637

Loss 3079 1691 6 4776
Gain 30,540 8391 82 39,013Colon adenocarcinoma

(TCGA-COAD)
Colon HT29, HCT116

Loss 6 8284 74 8364
Gain 1189 82 2 1273Lymphoid neoplasm diffuse 

large B-cell lymphoma 
(TCGA-DLBC)

B lymphocyte cell 
lines

OCI-Ly1
Loss 74 69 0 143

Gain 8509 3648 47 12,204Cerebrum
Loss 1453 1181 12 2646
Gain 8319 3659 38 12,016Cerebellum
Loss 1928 1271 4 3203
Gain 6723 3414 27 10,164Hypothalamus
Loss 1522 1482 18 3022
Gain 7559 3168 40 10,767

Glioblastoma multiforme
 (TCGA-GBM)

Brainstem

U251, GOS-3, 
PBT003

Loss 1374 1451 8 2833
Gain 3844 227 4 4075Kidney renal clear cell 

carcinoma (TCGA-KIRC)
Kidney iSLK.219

Loss 54 33 0 87
Gain 448 274 0 722Acute myeloid leukemia 

(TCGA-LAML)
Hematopoietic 
stem cells (HSC)

MOLM13, 
THP1, NOMO-1, 
MONO-MAC-6, 
MA9.3ITD

Loss 3 35 3 41
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Gain 7416 2511 2 9929Liver hepatocellular 
carcinoma (TCGA-LIHC)

Liver HepG2, Huh7, 
SMMC7721, 
HCCLM3

Loss 18 1765 4 1787

Gain 7022 531 0 7553Ovarian serous 
Cystadenocarcinoma 
(TCGA-OV)

Ovary PEO1
Loss 1350 1090 6 2446

Gain 3825 636 6 4467Prostate adenocarcinoma 
(TCGA-PRAD)

Prostate gland Cd-RWPE-1
Loss 550 288 2 840
Gain 3592 1324 4 4920Sarcoma (TCGA-SARC) Soft tissues U20S
Loss 373 28 0 401
Gain 79,470 17,177 118 96,765Skin cutaneous melanoma 

(TCGA-SKCM)
Skin Mel624

Loss 6472 1559 2 8033
Gain 35,438 2202 34 37,674Stomach adenocarcinoma 

(TCGA-STAD)
Stomach BGC823

Loss 1103 3313 27 4443
Gain 80,712 38,242 266 119,22

0
Uterine corpus endometrial 
carcinoma (TCGA-UCEC)

Corpus uteri HEC-1-A

Loss 7813 1828 22 9663
Gain 31,106 - 118 31,224Lung squamous cell 

carcinoma (TCGA-LUSC)
Lung -

Loss 2328 - 2 2330
Gain 595 - 4 599Lung -
Loss 57 - 0 57
Gain 674 - 5 679

Mesothelioma (TCGA-
MESO)

Heart -
Loss 102 - 0 102
Gain 6714 - 92 6806Cerebrum -
Loss 1423 - 19 1442
Gain 6601 - 109 6710Cerebellum -
Loss 1745 - 16 1761
Gain 5010 - 77 5087Hypothalamus -
Loss 1698 - 11 1709
Gain 5740 - 114 5854

Brain lower grade glioma 
(TCGA-LGG)

Brainstem -
Loss 1528 - 13 1541
Gain 484 - 9 493Kidney chromophobe 

(TCGA-KICH)
Kidney -

Loss 9 - 0 9
Gain 4028 - 17 4045Kidney renal papillary cell 

carcinoma (TCGA-KIRP)
Kidney -

Loss 118 - 0 118
Gain 728 - 2 730Cholangiocarcinoma 

(TCGA-CHOL)
Liver -

Loss 166 - 2 168
Gain 2285 - 21 2306Adrenocortical carcinoma 

(TCGA-ACC)
Adrenal gland -

Loss 385 - 3 388
Gain 345 - 1 346Pheochromocytoma and 

paraganglioma (TCGA-
PCPG)

Adrenal gland -
Loss 57 - 0 57

Gain 12,433 - 100 12,533Rectum adenocarcinoma 
(TCGA-READ)

Rectum -
Loss 1098 - 4 1102
Gain 520 - 7 527Thymoma (TCGA-THYM) Heart -
Loss 80 - 2 82
Gain 405 - 3 408Testicular germ cell tumors 

(TCGA-TGCT)
Testis -

Loss 109 - 0 109
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Gain 992 - 6 998Thyroid carcinoma 
(TCGA-THCA)

Thyroid gland -
Loss 156 - 0 156
Gain 6473 - 55 6528Pancreatic adenocarcinoma 

(TCGA-PAAD)
Pancreas -

Loss 1236 - 3 1239
Total - - - 463,79

2
122,47
3

1718 587,98
3
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