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ABSTRACT

As the most pervasive epigenetic mark present on
mRNA and IncRNA, Né-methyladenosine (mfA) RNA
methylation regulates all stages of RNA life in vari-
ous biological processes and disease mechanisms.
Computational methods for deciphering RNA modifi-
cation have achieved great success in recent years;
nevertheless, their potential remains underexploited.
One reason for this is that existing models usually
consider only the sequence of transcripts, ignor-
ing the various regions (or geography) of transcripts
such as 3 UTR and intron, where the epigenetic mark
forms and functions. Here, we developed three sim-
ple yet powerful encoding schemes for transcripts
to capture the submolecular geographic informa-
tion of RNA, which is largely independent from se-
guences. We show that m8A prediction models based
on geographic information alone can achieve com-
parable performances to classic sequence-based
methods. Importantly, geographic information sub-
stantially enhances the accuracy of sequence-based
models, enables isoform- and tissue-specific pre-
diction of m®A sites, and improves mfA signal de-
tection from direct RNA sequencing data. The geo-
graphic encoding schemes we developed have ex-
hibited strong interpretability, and are applicable to
not only m8A but also N!-methyladenosine (m!A),

and can serve as a general and effective comple-
ment to the widely used sequence encoding schemes
in deep learning applications concerning RNA tran-
scripts.

INTRODUCTION

Post-transcriptional RNA modi cations expand RNA
molecule’s functional and structural diversity (1) and reg-
ulate its metabolism at all stages of RNA life (2-5). More
than 100 different post-transcriptional RNA modi cations
have been identi ed in all three kingdoms of life (6). Among
them, NE-methyladenosine (m8A) is the most common
modi cation in eukaryotic MRNA and IncRNA (7). m®A
occurs on nascent pre-mRNA (8), modulating its trans-
lation (9,10) and is involved in many essential biological
processes, such as differentiation from naive pluripotency
(11,12), circadian clock (13), and the heat shock response
(14). It also plays various roles in disease development and
mechanisms, such as breast tumor (15), gastric cancer (16),
carcinoma (17) and anti-tumor immunity (18). Therefore,
the precise identi cation of modi cation sites is of crucial
importance for understanding the functional and regula-
tory circuitry of RNA.

Thanks to advances in high-throughput sequencing, a
number of experimental approaches have been developed
to pro le the entire epitranscriptome (19). Among them,
MeRIP-seq (or méA-seq) (20,21) is the rst method to de-
tect transcriptome-wide mSA RNA methylation, and tech-
nically can be viewed as a marriage of RNA-seq and ChlP-
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seq, where the fragmented RNAs are rst immunoprecip-
itated by anti-m®A antibody, and then puri ed and se-
quenced for the detection of m®A signals.

Since experimental approaches for studying RNA modi-

cation are expensive and laborious, in silico methods have
drawn increasing attention as an alternative avenue and
have achieved great success in recent years. To date, more
than 100 different approaches (22-26) have been estab-
lished for computational prediction of RNA modi cation
sites, including most notably, the iIRNA toolkit (27-36),
SRAMP (37), WHISTLE (38), Gene2vec (39), PEA (40),
DeepPromise (25), MASS (41), m6Aboost (42), MultiRM
(43), DeepAc4C (44), WeakRM (45), PULSE (46), NmRF
(47), etc. Among them, the iRNA toolkit (27-36) developed
primarily by Chen, Lin and Chou is the earliest as well as the
most versatile toolkit, supporting multiple RNA modi ca-
tion types based on RNA primary sequences and has been
widely recognized as the gold standard for benchmarking
the accuracy of different RNA modi cation prediction ap-
proaches. By taking advantage of various state-of-the-art
machine learning and deep learning techniques, the previ-
ous work has greatly advanced our understanding of the
localization and sequence characteristics of multiple RNA
modi cations under various biological conditions and in
different organisms.

Existing approaches for RNA modi cation site predic-
tion are mostly based on the primary sequences only. This
is not surprising given that the primary sequences of DNA,
RNA, and protein convey the most fundamental infor-
mation of the biomolecules and have been predominantly
used as the primary information source for existing ma-
chine learning tools in biosciences. There exist a large num-
ber of sequence-based methods to address various life sci-
ence challenges, such as the prediction of biological func-
tions and structures (48-51). Meanwhile, many tools have
been developed to facilitate feature extraction and ma-
chine learning modeling of the primary sequences, such as
bioSeg-Analysis (52), PyFeat (53) and PseKRAAC (54).
These tools have achieved enormous success, especially for
obtaining insights under biological contexts not adequately
explored by wet-experimental approaches. However, limited
by the computational resources available to handle large
datasets and the capability of deep learning models, in many
cases only a local fraction rather than the entire transcript
is used for prediction tasks, and a substantial amount of in-
formation is therefore discarded in the process. Although
the distant sequences discarded from the analysis could,
in theory, contain useful information as well, that infor-
mation can not be effectively extracted with current ma-
chine learning models. In the problem of RNA modi ca-
tion site prediction (55), conventional machine learning al-
gorithms typically consider only a local RNA fragment of
20-50-nt (29,32,33) when predicting whether a speci c ri-
bonucleotide is modi able or not. Even though some of
the latest deep learning approaches may take advantage of
up to 2000-nt anking sequences of the target, that may
still represent a relatively small fragment of the entire RNA
molecule that can be millions of nucleotides long. Not be-
ing able to take advantage of information related to the en-
tire RNA molecule may limit the potential of in silico ap-
proaches.
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On a separate note, to supplement sequence informa-
tion, transcript annotation has been used as another infor-
mation source for predicting RNA modi cations. This is
natural because both the transcript structure and the rel-
ative position on the transcript are found to be related to
the occurrence and function of RNA sub-molecular events.
For example, the most prevalent RNA modi cation, N°-
methyladenosine (m®A), is enriched on the last long ex-
ons and 3 UTRs (20,21,56), and can affect alternative splic-
ing (57); the microRNA target sites bounded by Argonaute
(AGO) proteins were shown to be predominantly located in
the CDS and 3 UTR of the target mMRNAs but not 5 UTRs
(58). Therefore, encoding the sub-region information (ge-
ography) of the transcript may be useful for deep learn-
ing models applied to RNA transcripts. We previously de-
veloped WHISTLE (38) as a high-accuracy m8A site pre-
dictor, which incorporated 35 genomic features besides the
conventional sequence features, including the transcript re-
gion information, such as the region type (3 UTR, CDS,
5 UTR, etc.) of the target ribonucleotide or whether it is
within an exon with a width >400-nt. Although only 41-nt
long RNA sequences were seen in the WHISTLE method,
its performance is comparable to the state-of-the-art deep
learning models based on thousands of nucleotides of in-
put sequences. Recently, miCLIP2 (42) also considered re-
gion type information in their machine learning model. In
the RNA binding protein (RBP) target prediction problem,
transcript information has been represented as one-hot en-
coded region type features (59,60), e.g. each 50-nt upstream
and downstream relative to the RBP binding site was as-
signed into ve types of transcript region: exons, intron,
CDS, 5 UTR and 3 UTR, resulting in 101 x< 5 region type
features. More recently, DeepRiPe (61), a deep learning ap-
proach for predicting and interpreting RBP target sites, also
used these region-type indicators and considered a 250-nt
window as a suitable range. However, these approaches may
suffer from the following limitations. Although the region
features de ned in WHISTLE enabled signi cant improve-
ment in the prediction performance, they cannot effectively
capture the relative positional information with respect to
the long-range region boundaries, e.g. exon/intron junc-
tions and stop codons. Additionally, 35 genomic features
were independently de ned, and a uniform logic is unavail-
able for the automatic extension of the framework to other
more general regional annotations. The widely used one-hot
encoding of the region type features within a xed-length
window typically results in an incomplete landscape of the
local transcript structure. Furthermore, the region type fea-
ture matrix contains lots of redundant information in the
form of consecutive identical vectors, suggesting that this
encoding scheme is still crude. In general, it is still an open
question how best to extract the geographic information of
ribonucleotides with respect to the functional sub-regions
of the entire RNA transcript.

In this study, we explored different strategies for en-
coding sub-molecular geographic information of ribonu-
cleotides and developed a tool called geographic represen-
tation of transcript as vectors (Geo2vec), which implements
three novel encoding methods, landmarkTX, gridTX and
chunkTX, as well as the widely used one-hot method. Land-
markTX is a lightweight encoding scheme directly captur-
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ing the position of the target ribonucleotide (or site) relative
to transcript landmarks, e.g. the distances to the two edges
of the exon, coding sequence (CDS), and transcript, respec-
tively. Meanwhile, gridTX and chunkTX are designed to de-
scribe the landscape of the entire transcript through grids
(of equal widths) or regions (with unequal width), respec-
tively. The novelty of the newly proposed Geo2vec method
relates to the following three aspects. First, compared to the
local contextual information captured by existing one-hot
encoded region type features, Geo2vec retains more tran-
script structure with lighter weight (landmarkTX has only
6 features, and chunkTX has only 245 features). Geo2vec
not only captures the complete landscape of transcripts but
also makes the model aware of the relationship between the
target site (ribonucleotide of interest) and the region bound-
aries. Second, although the transcript encoding constructed
by Geo2vec is at a single transcript level, it allows us to deal
with isoform ambiguity of RNA by encoding each isoform
transcript as a separate feature matrix and then pooling all
the isoforms together in the deep neural networks. Third, re-
cent advances in deep learning model interpretation meth-
ods allow us to explore the contribution of each input fea-
ture after obtaining a well-trained neural network model.
The interpretation of Geo2vec descriptors can provide bio-
logical insights into the relationship between the target and
the transcript landscape. Together, Geo2vec provides gen-
eral, lightweight, more informative, and interpretable sub-
molecular geographic descriptors of transcripts, which are
largely independent from the widely used sequence descrip-
tors.

Using m8A site prediction as a test case, we evaluated
the effects of different geographic encoding schemes. Our
results suggested that the performance of the m®A predic-
tion model based on geographic information alone (AUC
of 0.807) is already comparable to the classic sequence-
based approaches such as MethyRNA (AUC of 0.790)
(62), and incorporating additional geographic information
can substantially enhance the accuracy of the state-of-
the-art sequence-based learning model DeepPromise (25),
with 3.2% higher AUC score and a 3.3% higher improve-
ment in AP (Average Precision) score. Additionally, we
explored the impact of isoform ambiguity on mfA site
prediction and developed an attention-based multiple in-
stance learning framework to fully use the isoform tran-
script information. By combining our previously developed
WeakRM framework (45) and Geo2vec, we constructed
isoform-aware high-accuracy tissue-speci ¢ m®A predictors
for 25 human tissues (with mean AUC of 0.893 and mean
AP 0.873). Compared with the sequence-only model, the
AUC is 8% higher, and the AP is 10.7% higher, showing
the importance of distinguishing isoform-speci ¢ methy-
lation. Furthermore, the interpretation analysis indicated
that the m®A is enriched within long exons and the 3 -end
exons, which is consistent with existing knowledge. We also
demonstrated its usage in constructing a technically robust
mSA site predictor and detecting m®A signals from Oxford
Nanopore direct RNA sequencing data. Overall, Geo2vec
will be a useful tool for submolecular geographic encoding
of transcripts, providing additional complementary infor-
mation that is largely independent from their sequences and

delivering novel biological insights owing to its strong inter-
pretability.

MATERIALS AND METHODS
Raw data and preprocessing

Four sets of reported m8A sites were used in base-resolution
mSA prediction. The rst two datasets, denoted as the
srampl7 benchmark dataset and sramp17 independent test-
ing dataset, were constructed by mapping the coordinates
from the supplementary data of SRAMP (37) to Ensembl
database v79. Only human data from these datasets were
used to evaluate our models, and only the m®A sites that
conform to the DRACH motifs were retained. The méA
sites were mapped to the longest transcript when there was
isoform ambiguity. Then the positive data in the benchmark
dataset were extracted from randomly selected 80% tran-
scripts. The data from the remaining transcripts were used
to construct the independent testing dataset. According to
existing works, we randomly sampled negative data in the
benchmark dataset to keep the positive-negative ratioas 1:1.
The ratio in the independent testing dataset is 1:10.

We constructed a third dataset for building a more ro-
bust méA predictor by integrating the majority of currently
available m®A sites detected by various epitranscriptome
pro ling technologies, denoted as robust m® A sites. In par-
ticular, we collected 20 datasets generated from 9 different
méA pro ling approaches (Supplementary Table S1), con-
structed technique-speci ¢ epitranscriptomes by merging
datasets generated from each technique, and selected those
sites that can be detected by multiple techniques. Based on
permutation analysis and the control of FDR, 1,243 mfA
sites located on 933 genes that can be detected by at least
4 techniques were used to construct a technically robust
benchmark dataset (Supplementary Table S2). The negative
data was sampled from the DRACH motifs on the same
transcripts carrying the positive sites. We excluded sites in-
cluded in the m°A sites collected (i.e. those that were once
identi ed as modi able).

To evaluate Geo2vec on m8A signal detection from direct
RNA sequencing, we downloaded HEK?293T Nanopore
RNA sequencing data from xPore (63). Since the next-
generation sequencing-based mSA pro ling technique
M6ACE-seq (64) was proposed by the same laboratory on
the same cell line, we constructed a fourth dataset using
M6ACE-reported sites as training dataset to maximize con-
cordance between data and labels. A total of 15,871 sites
at DRACH were collected. All other DRACH motifs from
sample transcripts as those sites reported by m6ACE-seq
and not reported as methylated in any study were used
as negative data (n = 234,006). For Nanopore sequencing
data, all three HEK293T wild-type replicates were merged
for use. Raw fast5 les were rst basecalled using Guppy
3.1.5 and then resquiggled using Tombo. Inside Tombo,
reads were aligned to the transcriptome with minimap?2 (65)
using Ensembil release version 104.

We collected 25 tissue-speci ¢ m®A datasets from 8 ex-
isting works, as shown in Supplementary Table S3. The raw
sequencing data were downloaded from NCBI GEO (https:
/iwww.ncbi.nlm.nih.gov/geo/) (66) and National Genomics
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Data Center (https://ngdc.cnch.ac.cn/) (67). We used Trim
Galore (68) to Iter adaptors and low-quality nucleotides
and HISAT?2 (69) to align the processed reads to the ref-
erence genome UCSC hg19. Finally, exomePeak?2 (70) was
used to detect the m8 A enriched regions (peaks) with the de-
fault setting. These called peaks were considered as positive
data (regions with m®A signals). In our training, we further
selected peaks with a width <400-nt and retained the peaks
whose start and end are on exons. The negative data were
randomly selected from non-peak regions of the same tran-
script of positive data. The positive-to-negative ratio was
keptas 1:1. The negative regions were also cropped to match
the peak width of positive data.

We collected the m'A epitranscriptome detected in the
HEK?293T cell line reported by four different technologies,
as shown in Supplementary Table S4. The reported m*A
sites were pooled together as positive data, and the negative
sites were generated in the same way as previously described
in the m®A prediction task.

Geographic encoding of RNA transcripts

Of interest here is to faithfully encode the sub-molecular ge-
ographic information of ribonucleotide with respect to the
entire transcript structure, such as5 UTR, intron, and exon.
Since RNA modi cation’s functions are intrinsically asso-
ciated with speci ¢ RNA regions, taking advantage of this
layer of information should provide novel insights into epi-
transcriptome regulation.

We assumed rstly that the relative positions of the tar-
get site (or the ribonucleotide of interest) with respect to
different transcript regions of RNA are essential attributes
and should be explicitly conveyed through the designed en-
coding scheme. To this end, we developed the rst and the
most straightforward encoding method that contains the
above information, namely landmarkTX (Figure 1B). From
local to global, three types of regions related to transcript
structure are considered, including the exon, the coding se-
quence (CDS), and the entire transcript. The landmarkTX
method presents the distance of the target site to six tran-
script landmarks related to three types of regions, i.e. the 5
and 3 boundaries of the exon, the CDS, and the entire tran-
script. Each distance has two directions, towards the tran-
script starting site (TSS) and towards the transcript end-
ing site (TES) of RNA. The distance to the exon bound-
ary and to the transcript boundary is always positive. When
the site is located at the 5 UTR or the 3UTR of a tran-
script (outside the CDS region), a negative sign is assigned
to the distance to the CDS start site or CDS end site, re-
spectively. Such a design has the following two bene ts.
The distances in two directions together can locate the rel-
ative position of the site on regions. Meanwhile, the model
can easily learn the length of the corresponding region by
adding the distances in the two directions. With only six fea-
tures, landmarkTX encoding is very lightweight and very
ef cient.

While landmarkTX provides a most concise way to en-
code the sub-molecular geography of a ribonucleotide with
respect to three key regions (exon, CDS, and transcript),
methods that can capture the entire transcript are also of in-
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terest. Inspired by the one-hot encoded region type features
(Figure 1A), we extend the indicator from single nucleotide
resolution to fragment level (of the same width), named af-
ter gridTX (Figure 1C). For gridTX, the width of the frag-
ments is a hyper-parameter and should be speci ed for the
descriptor. The rationale behind this design is that, divid-
ing a transcript evenly into a xed number of fragments en-
sures that the information of all regions is retained in the
same-shaped descriptors for all transcripts despite the dif-
ference in their length (with the width of the fragments ac-
commodating the length difference). For each fragment, the
region type composition is calculated according to the num-
ber of ribonucleotides belonging to a speci ¢ region. Five
regions are considered here, including exon, intron, CDS,
5UTR and 3 UTR. The composition of every fragment is
individually evaluated. When a fragment contains the tar-
get site or a part of the target area, an indicator is added
as a new layer of the descriptor. The model should learn
the local context and the relative position of the target on
the transcript by combining the target indicator and feature
matrix. It may be worth noting that, the one-hot encoded
region type feature may be considered as a special case of
gridTX when the width of each fragment is set to one nu-
cleotide (or the number of fragments is equal to the length
of the transcript).

Unlike gridTX, chunkTX is constructed at the region (of
different width) level and can thus avoid the blurring of the
precise region boundaries and their region type composi-
tion (Figure 1D). Importantly, the length of its output de-
pends only on the complexity (number of exons) of the tran-
script but not its sequence length, which makes it very ef -
cient for describing a large trunk of ribonucleotide with the
same region type. In practice, 729 regions (corresponding
to a feature matrix of 729 x 6) are suf cient to accurately
encode the geography of the most complex human tran-
script of 2 304 640-nt recorded in the Ensembl (71) tran-
scriptome annotation database EnsDb.Hsapiens.v79, com-
pared with the one-hot encoding method that requires a
feature matrix of 5 < 2 million. It is important to note
that chunkTX retains all the information of the entire tran-
script unambiguously and may be viewed as a condensed
version of one-hot encoding with the adjacent repetitive
features merged together. Due to varying exon numbers of
transcripts, to obtain the same shaped geographic features,
the use of chunkTX requires zero-padding for simple tran-
scripts and trimming for very complex transcripts, just as
the widely used one-hot encoding. Additionally, instead of
using the target indicator to give the position of the target
nucleotide, chunkTX aligns the target site (or area) in the
middle of the feature matrix. It is worth mentioning that
when the target ribonucleotide (or the entire target area)
is entirely within a genomic region, the target divides the
mapped region into three sub-regions, and each will be en-
coded independently. For instance, when a base-resolution
mSA site is mapped within an exon, the target site itself is
encoded as a region with a width of 1 and an exon indicator
of 1. Additionally, the left and the right chunks are encoded
aswell. In general, chunkTX records the information about
all regions in the transcript, including their width, compo-
sition, and relative order.
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Figure 1. Simple graphical illustrations of the transcript descriptors. (A) RNA transcripts can be encoded by their sequence and geography (region types,
such as 3 UTR, CDS, intron). One-hot encoding of transcript primary sequence and region type, which stacks the one-hot indicator of each nucleotide into
a single feature matrix, has been widely used in machine learning applications concerning RNA. However, one-hot encoded region type features contain
lots of repetitive information, shown as identical columns adjacent to each other, suggesting that the method is still inef cient. Meanwhile, trimming the
sequence for a local fragment is often necessary for model selection purposes, which inevitably discard useful information. (B) The landmarkTX encoding
uses three sets of distances to indicate the relative position of the ribonucleotide of interest on exons, CDSs, and transcripts, which not only indicates its
position on the entire transcript related to key regions but also inexplicitly conveys the width of these regions. (C) The gridTX encoding divides a transcript
into multiple fragments of equal width and returns the composition of each region type within a fragment, the fragment width, and whether a fragment
contains the target ribonucleotide. (D) The chunkTX encoding constructs indicators at the region (with different width) level, with the target site or region
in the center and zero paddings on the short side. It avoids the blurring of precise boundaries of regions and their composition. It also unambiguously
retains the complete geography of the transcript and may be viewed as a condensed version of one-hot encoding after merging adjacent repetitive columns.

Model design of kernels was 5 and 3. When combining sequence features
and geographic encodings (GepSe), we adopted the multi-
model framework used in DeepRiPe, but replaced the se-
quence module with the network used in DeepPromise and
replaced the region module with the network shown in Fig-
ure 2B. A simpli ed graphical illustration of the network
architecture and a network parameters table can be found
in Supplementary Figure S1.

As for tissue-speci ¢ MeRIP-seq based m®A data, only
coarse-grained labels are available, which means that we
only know whether a peak (genome bin) contains m®A sites
or not, but we do not know which adenosine is modi able.
We previously developed WeakRM (45), a weakly super-
vised learning framework that takes genome bin data of
various widths as input and learns context-speci ¢ RNA

In this work, all Geo2vec encodings, one-hot encoded re-
gion type features, and one-hot encoded sequence features
were generated by our Geo2vec R package. The classi-
cal sequence features (NCP and PseDNC) were generated
through iLearnplus (72). Both machine learning algorithms
and deep learning frameworks were utilized to evaluate the
transcript descriptors developed using Geo2vec. The re-
ported results based on XGBoost model were based on
Python package xgboost 1.4.2 with the default parameters.
All deep learning models were constructed under Tensor-
ow 2.3.2.

The networks used in DeepPromise (25) and DeepRiPe
(61) were reproduced to show the model performances that
are based on sequence features only and a combination of methvlation patterns. In our tissue-speci ¢ m°A prediction
sequence and region type features. Both sequence and re- ylation p ' ur LISSue-spec predicti

; - . . problem, the instance length was set to 50, and the instance
?e'%n :[g:p_e Eza%urgs \(/)\aerérfp[gesintg dOL]JSIgg_O?S f:)otlenct):]o%ng stride was set to 10. All network parameters and training

settings were consistent with those used in the WeakRM
paper. When using the transcript descriptor (chunkTX) to
assist model learning, we modi ed the multi-model used in
base-resolution prediction by replacing the sequence mod-
ule with the feature extraction network in WeakRM.

[0, 0,0, 1]). The network framework used for Geo2vec tran-
script descriptors (gridTX and chunkTX) is shown in Fig-
ure 2B. Two convolutional layers were used to extract fea-
tures, with one max-pooling layer and one dropout layer in
the middle. The number of Iters was 64 and 32, and the size
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The above framework can only handle one transcript iso-
form at a time, thus lacking the ability to deal with iso-
form ambiguities. Inspired by multiple instance learning, a
kind of weakly supervised learning, we treat each isoform
as an instance and use an attention mechanism to merge
features learned from all isoforms to obtain the nal out-
put. As shown in Figure 3C, each isoform is fed to a tran-
script module for feature extraction. The weights in these
transcript modules are shared. The input sequence is ei-
ther sent to the sequence module when base-resolution mé A
data is available or divided into instances and learned by the
MIL framework when working on genome bin data. The se-
quence feature is then broadcast to the same number of iso-
forms and concatenated with each isoform feature. The con-
catenated features are then fed to an attention layer. Speci -
cally, two fully connected layers with tanh and sigmoid acti-
vation functions respectively are used to obtain a query vec-
tor for each sequence-isoform complex. Then another fully
connected layer is applied to measure the similarity between
the context vector (key) and the query vector and return an
attention weight for each sequence-isoform complex. The
learned weights are used to merge all the hidden features
and generate the nal output.

The read features based network for direct RNA se-
quencing modeling were adapted from DeepSignal (73) and
DeepSignal-plant (74). One-hot encoding of nucleotide,
normalized mean, standard deviation, median, median ab-
solute deviation (MAD), and dwelling time of the signal for
each nucleotide in k-mers centering on the site of interest (k
= 13 by default) were extracted as sequence features. Sam-
pled m signal values with zero paddings for each nucleotide
in k-mers were also used as signal features. For each read,
a geographic feature matrix was generated and truncated
according to the start and end of the read. We followed
m6Anet (Hendra et al. 2021) to sample 20 reads for each
site and used Noisyor function to aggregate read level prob-
ability scores to site-level scores. However, for those labeled
sites that can only be covered by <20 reads, we did not set
a minimum read threshold of 20 but used zero padding so
that our model could also capture low-expression sites. A
simpli ed graphical illustration of network architecture can
be seen in Figure 6.

The training of the base-resolution m®A predictor, with
random or longest isoform, was conducted using a mini-
batch size of 128 for 20 epochs. When multiple isoforms
were considered, or the genome bin data was used, the num-
ber of epochs was reduced to 1 since the number of in-
puts was inconsistent in the dataset. During training, the
Adam optimizer was used to minimize the binary cross-
entropy loss. All training and evaluation were performed on
1 NVIDIA RTX 2080Ti.

Evaluation scores

We evaluated the tested models using cross-validation. We
used 10-fold for the base-resolution m®A data and 5-fold
for the tissue-speci ¢ mOA peak data, because some tissues
have relatively less positive data than the site at the single-
nucleotide level. The predictions for independent datasets
were obtained by averaging the outputs of all 10 cross-
validation models. The model performance was assessed
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using the receiver operating characteristic (ROC) curves
and precision-recall (PR) curves, as well as the area under
ROC curves (AUC) and average precision (AP) that is de-

ned by the weighted mean of precision scores under each
threshold (the increase in recall from the previous threshold
is used as weight). Average precision is more appropriate
for the sramp17 independent dataset where the positive-to-
negative ratio is 1:10, because it does not consider the true
negatives, preventing model performance bias due to the
dominance of negative data. In cross-validation, the mean
scores and standard deviations of the evaluation metrics
across folds were reported.

Model interpretation

Shapley additive explanations (SHAP) (75) is used to assess
the contribution of each feature to the model output. SHAP
assigns each feature an importance score using the classical
Shapley values from game theory and its extensions, and
provides tools to combine the local interpretation of each
prediction to understand the global model structure. We
used SHAP to explain tree-based models on landmarkTX
and chunkTX. First, a SHAP beeswarm plot was used to
show the in uence of the most important features on the
model output. The values of these features are represented
by colors, with red indicating high values, blue indicating
low values, and purple indicating median values. The value
points of each feature are located along the x-axis, showing
the distribution of their impact on model output. A straight
line indicating the zero in uence on the model is also drawn.
A positive impact means that the model prefers these feature
values in the prediction of m®A. When the number of fea-
tures is greater than 10, only the Top 9 important features
are shown in the gure, as well as a summary of the remain-
ing features. Although the beeswarm plot shows the impact
of each feature sorted by feature importance, the total con-
tribution of a feature and the difference in contribution be-
tween features are not completely clear. To thisend, a SHAP
bar plot was also provided. It shows the global contribution
of the feature in terms of the average absolute SHAP value.
The higher the value on the bar, the greater the in uence of
the feature on the model. We also evaluated the use of Deep
SHAP in interpreting deep learning models (as shown in
Supplementary Figure S2). The training dataset is used as a
background, and a local interpretation of the predicted true
positives is performed.

RESULTS
mEA site prediction based on geographic information alone

Given that RNA modi cations are associated with speci ¢
sub-regions on RNA in their formation and functions, it is
reasonable to assume that the geographic information en-
coded by our approaches can contribute to RNA modi ca-
tion prediction. To this end, we rst evaluated the predictive
power of geographic information alone in the m®A site pre-
diction task using the sramp17 benchmark dataset (37).
We considered here the three newly proposed geographic
encoding schemes (landmarkTX, gridTX and chunkTX)
and also the widely used one-hot encoded region type fea-
tures. Speci cally, the mature RNA model was selected,

2202 1990100 Lz UO Jasn AYisiaaiun [eo1pa|y ueling Aq 928/ | 29/06Z01/81/0G/3I0Me/ieu/wod dno ojwapede)/:sdjly Woij papeojumoq



Downloaded from https://academic.oup.com/nar/article/50/18/10290/6717826 by Fujian Medical University user on 21 October 2022



Downloaded from https://academic.oup.com/nar/article/50/18/10290/6717826 by Fujian Medical University user on 21 October 2022



Downloaded from https://academic.oup.com/nar/article/50/18/10290/6717826 by Fujian Medical University user on 21 October 2022



Downloaded from https://academic.oup.com/nar/article/50/18/10290/6717826 by Fujian Medical University user on 21 October 2022



