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ABSTRACT

Deciphering the biological impacts of millions of
single nucleotide variants remains a major chal-
lenge. Recent studies suggest that RNA modifi-
cations play versatile roles in essential biological
mechanisms, and are closely related to the progres-
sion of various diseases including multiple cancers.
To comprehensively unveil the association between
disease-associated variants and their epitranscrip-
tome disturbance, we built RMDisease, a database
of genetic variants that can affect RNA modifica-
tions. By integrating the prediction results of 18 dif-
ferent RNA modification prediction tools and also
303,426 experimentally-validated RNA modification
sites, RMDisease identified a total of 202,307 hu-
man SNPs that may affect (add or remove) sites of
eight types of RNA modifications (m6A, m5C, m1A,
m5U, �, m6Am, m7G and Nm). These include 4,289
disease-associated variants that may imply disease
pathogenesis functioning at the epitranscriptome
layer. These SNPs were further annotated with es-
sential information such as post-transcriptional reg-
ulations (sites for miRNA binding, interaction with
RNA-binding proteins and alternative splicing) re-
vealing putative regulatory circuits. A convenient
graphical user interface was constructed to sup-
port the query, exploration and download of the rel-
evant information. RMDisease should make a useful
resource for studying the epitranscriptome impact
of genetic variants via multiple RNA modifications

with emphasis on their potential disease relevance.
RMDisease is freely accessible at: www.xjtlu.edu.cn/
biologicalsciences/rmd.

INTRODUCTION

With the advances in the high-throughput sequencing tech-
nique, millions of single nucleotide polymorphisms (SNPs)
have been identified from multiple species and in multiple
human cancers, suggesting their critical roles in diverse bio-
logical functions and human health. However, deciphering
if and how SNPs lead to functional changes is still a major
challenge. Even synonymous SNPs, which do not change
the amino acid sequence and so are sometimes considered
‘silent’ mutations, can still play critical roles during tran-
scriptional and post-transcriptional regulation (1), such as
changing splicing sites (2), influencing RNA-protein inter-
actions (3) and alteration of RNA secondary structures.

Substantial efforts have been made to relate the genetic
variants to their immediate biological consequences, includ-
ing with regard to transcriptional regulation (4,5), post-
transcriptional protein modification (6–12), RNA–protein
interaction (13), calpain cleavage (14), ceRNA networks
(15), polyadenylation (16) and RNA modifications (17,18).
Most of these works were based on a widely adopted com-
putational framework, i.e. a machine learning model is
firstly trained to capture the characteristics of a specific type
of epigenetic mark (or interaction) from gold standard ex-
perimental datasets. With the model, it is then possible to
assess the probability of the mark being associated with a
given (DNA, RNA or protein) sequence, and further, pre-
dicting whether a genetic mutation can affect the status
of epigenetic mark by comparing the probabilities of the
mark being associated with the original and the mutated se-
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quences. Importantly, this analysis not only explains how a
genetic variant regulates an epigenetic mark, but also helps
explain the phenotypes associated with the SNP, as those
identified from GWAS analysis. For example, if a SNP is
known to increase the risk of a disease, and can also de-
stroy a transcription factor binding site, it is often natural to
speculate a transcription-related disease mechanism, even
though the two may not be directly causal, and additional
experimental validation is necessary.

The epitranscriptome has emerged as an important layer
for gene expression regulation (19,20). Recent studies sug-
gest that various RNA modifications occur widely in the
transcriptome, play versatile roles in essential biological
mechanisms, and are closely related to the progression of
various diseases (21–24). For example, N6-methyladenosine
(m6A) controls the speed of the circadian clock (25), affects
RNA stability (26) and regulates the progression of multiple
cancers (27–30). N4-acetylcytidine (ac4C) promotes trans-
lation efficiency (31), and 2′-O-methylation (Nm) of HIV
transcripts help the virus to avoid innate immune sensing
(32).

A number of high-throughput approaches have been de-
veloped for profiling the transcriptome-wide distribution
of different types of RNA modifications, including m6A-
seq (or MeRIP-seq) (33,34), PA-m6A-seq (35), miCLIP
(36) and m6A-CLIP (37). These approaches have generated
a large number of high-quality epitranscriptome datasets,
on the basis of which the properties of the modification-
carrying RNA sequences can be characterized. This enables
the prediction of RNA modification sites from the primary
sequences (38,39), and hence allows prediction of the im-
pact of genetic variants on RNA modification by compar-
ing the potential for modification of the original and the
mutated sequences. iRNA-methyl (40) and SRAMP (41) are
two of the earliest and most widely adopted approaches for
predicting RNA methylation sites from the primary RNA
sequences. We previously developed a high-accuracy predic-
tor WHISTLE (42) for prediction of RNA methylation sites
by taking advantage of conventional sequence features as
well as 35 additional genomic features (43).

There exist several databases of RNA modifications
with different focuses. The MODOMICS database con-
cerns mainly RNA modification pathways. MeT-DB (44),
CVm6A (45) and REPIC (46) collect and annotate the
transcriptome m6A sites under different experimental con-
ditions; while RMBase is currently the most comprehen-
sive database containing well annotated sites of multiple
types of RNA modifications identified in multiple species.
m6AVar (17) and m7GDiseaseDB (18) contain disease-
associated SNPs that can affect m6A and internal m7G
RNA modification, respectively. Both were based on their
respective customized RNA modification site prediction
tools (m6AFinder and m7GFinder). These efforts together
greatly facilitated research into RNA modifications. How-
ever, to the best of our knowledge, the impact of genetic
mutation on most transcriptome modifications such as
m5C, � and Nm, has not been studied, and a centralized
platform is not yet available for systematically decipher-
ing the association of genetic variants with multiple RNA
modification types as predicted by multiple independent
tools.

To address this, we present here RMDisease, a database
of genetic variants that affect RNA modifications with a
focus on their potential disease association. By integrat-
ing 303,426 RNA modification sites, 40,915,548 somatic
and germline SNPs and 18 prediction tools, RMDisease
represents the most comprehensive available mapping from
genome variants to their epitranscriptome disturbance.
RMdisease contains a total of 202,307 human SNPs that
can effect (add or remove) eight types of RNA modifica-
tions (m6A, m5C, m1A, m5U, �, m6Am, m7G and Nm),
including 4,289 disease-associated variants that may imply
disease pathogenesis functioning at the epitranscriptome
layer. Additionally, the RNA modification-affecting SNPs
were further annotated with putative post-transcriptional
machinery including RNA-binding protein (RBP) bind-
ing sites, miRNA targets and splicing sites. A graphical
user interface was constructed to support the query, explo-
ration and download of the database. The overall design of
RMDisease is summarized in Figure 1.

MATERIALS AND METHODS

Data resource

We considered in this study only the RNA modifications
that widely occur in the transcriptome. Since there is not
yet available a relatively complete high-confidence collec-
tion of such data, we manually collected from 32 studies
the sites of eight types of RNA modifications, including
m6A (178 049 sites), m5C (95 391 sites), m1A (16 346 sites),
m5U (3696 sites), � (3137 sites), m6Am (2447 sites), m7G
(2525 sites) and Nm (1835 sites), respectively. These sites
were reported from 68 high-throughput sequencing experi-
ments generated by 18 base-resolution technologies, includ-
ing m6A-REF-seq (47), MAZTER-seq (48), miCLIP (36),
m6A-CLIP-seq (37), PA-m6A-seq (35), �-seq (49), Pseudo-
seq (50), CeU-Seq (51), RBS-Seq (52), m1A-MAP (53),
m1A-seq (54), Aza-IP (55), RNA-BisSeq (56), FICC-Seq
(57), Nm-seq (58), m7G-seq (59), m7G-miCLIP-Seq (60).
Detailed information regarding these sequencing samples
is provided in Supplementary Table S1.

We obtained 3 820 716 somatic variants and 37 094 832
germline variants from dbSNP (v151) and TCGA (v15.0),
respectively (see Supplementary Table S3). Only the vari-
ants located within the mature transcripts were kept for fur-
ther analysis.

Derivation of RNA modification-associated variants

The RNA modification-associated SNPs (RM-SNPs) are
defined as SNPs that may lead to the gain or loss of an RNA
modification site, as reported by the prediction tools via
comparing the modification status of the original and the
mutated sequences. RM-SNPs were further classified into
3 sub-groups based on their reliability, including: (i) high: a
SNP directly alters the experimentally validated RNA mod-
ification site, leading to its loss; (ii) medium: a SNP alters
a nucleotide within the 41 bp flanking window of an ex-
perimentally validated RNA modification site (but not di-
rectly the modifiable nucleotide itself), causing its loss as
predicted by a machine learning model; (iii) Low: a SNP
alters a nucleotide within the 41 bp flanking window of an
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Figure 1. The overall design of RMDisease. RMDisease integrates 303,426 high-confidence RNA modification sites experimentally detected by 18 base-
resolution technologies and 18 independent in silico machine learning tools to evaluate systematically the potentials of somatic and germline variants to
affect eight types of transcriptome modifications. Disease association and post-transcriptional regulations were further integrated to unveil potential epi-
transcriptome pathogenesis and putative regulatory machinery. A graphical user interface was constructed to support the query, exploration and download
of the database.

RNA modification site (may or may not directly the mod-
ifiable nucleotide itself), causing significant increase or de-
crease in the probability of RNA modification. It may be
worth noting that the identification of RM-SNPs of high or
medium confidence level both require experimentally vali-
dated RNA modification sites in the very beginning.

We integrated 18 prediction tools developed for eight
RNA modifications to perform comprehensive and inde-
pendent evaluations, including five deep learning-based
methods: DeepPromise (38), DeepM6Aseq (61), DeepM-
RMD (62), iPseU-CNN (63), Deep-2′-O-Me (64) and
13 machine learning-based methods: WHISTLE(65),
SRAMP(66), iRNA-3type (67), iMRM (68), iRNA-2OM
(69), iRNA-m5C (70), RAMPred (71), iRNA-PseColl
(72), iRNA-m7G (73), m7GFinder (74), iRNA-PseU (75),
PIANO (76), ISGm1A (77).

The association level (AL) between SNP and an RNA
modification is calculated as follows:

AL =
{

2PSNP − 2 max (0.5, PWT) for gain
2PWT − 2 max (0.5, PSNP) for loss (1)

where, PWT andPSNP represent the probability of modifica-
tion for the wild type and mutated sequences, respectively,
as obtained from individual prediction tool (or experiment
data if available). The association level (AL) ranges from 0
to 1, with 1 indicating the greatest impact on RNA modifi-
cation. The statistical significance was assessed by compar-
ing to the ALs of all mutations, with which the upper bound
of the P-value can be calculated. Different prediction tools
were employed for the same modification to obtain the as-
sociation level for their corresponding target modification.
As shown in previous studies, the RNA modification pre-
diction tools that integrate both the sequence and genome-
derived features outperform those based on sequence fea-
tures only (38,65,74,76–77), and were thus used as the pri-
mary method. We retained the RM-SNPs with association

level >0.4 and P-value <0.05 as predicted by approaches
that took advantage of both sequence and genome-derived
features. The results obtained from other methods (based
on sequence only) were provided in RMDisease as well for
reference purpose (see Supplementary Table S2).

Additional annotation

To annotate the basic genomic information of RNA
modification-associated variants, the transcript structure
from UCSC genome browser including CDS, 3′UTR,
5′UTR, start codon and stop codon, etc. were used, and
the genomic conservation were annotated by the phast-
Cons 60-way. In addition, the deleterious level of each
RNA modification-associated variant was analyzed by
SIFT (78), PolyPhen2 HVAR (79), PolyPhen2HDIV (79),
LRT (80) and FATHMM (81) using the ANNOVAR pack-
age (82). Furthermore, to provide annotation of putative
post-transcriptional regulatory machinery, information on
RBP binding sites from POSTAR2 (83), miRNA-RNA in-
teraction from miRanda (84) and startBase2 (85), and splic-
ing sites from UCSC annotation with GT-AG role within
100 bp upstream and downstream of RNA modification-
associated variants was integrated into the database. To
unveil potentially epitranscriptome-related pathogenesis,
the association between disease and RNA modification-
associated variants was extracted from GWAS catalog (86),
ClinVar (87) and Johnson and O’Donnel’s data (88). Ad-
ditionally, the RNA molecule–drug sensitivity associations
from RNAactDrug (89) were obtained to provide a drug
suggestion for each RNA modification-associated SNP.

Database and web interface implementation

MySQL tables were used for the storage and management
of the metadata in RMDisease. Hyper Text Markup Lan-
guage (HTML), Cascading Style Sheets (CSS) and Hyper-
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text Preprocessor (PHP) were applied in the construction of
web interfaces. The multiple statistical diagrams were cre-
ated by EChars and the genome browser was implemented
using Jbrowse (90) for the exploration of all the analysis re-
sults.

RESULTS

Database content

We firstly evaluated the potentials of genetic variants to add
or remove an RNA modification site directly or indirectly.
In the end, a total of 57 622, 23 463, 61 563, 23 875, 24 822,
640, 5047 and 5275 genetic variants were found to be associ-
ated with m6A, m1A, m5C, �, m7G, Nm, m5U and m6Am,
respectively, providing so far the most comprehensive map
of genetic factors of epitranscriptome disturbance (Table 1).

We then obtained disease annotations of SNPs from
GWAS catalog, Johnson and O’Donnel’s data, and Clin-
Var, and mapped them to RM-SNPs. These SNPs may link
disease pathogenesis and clinical relevance to epitranscrip-
tome regulations (Table 2). We summarized in Table 3 the
diseases that are associated with the most RM-SNPs of a
specific RNA modification type.

We then asked whether the RM-associated SNPs are
more functional relevant to important biological events
compared to non-associated SNPs, and used evolutionary
conservation as an indicator. For this purpose, the phast-
Cons 100-way conservation scores from UCSC was consid-
ered to evaluate the conservation of individual site, which
was calculated for human genome derived from genome-
wide multiple alignments with 99 other vertebrate species.
Interestingly, we found that the RM-associated variants
were more conserved than non-associated variants (Fig-
ure 2), suggesting that the RM-associated SNPs underwent
stronger selection pressure than the other variants, and may
be related to important biological events that can be regu-
lated at the epitranscriptome layer.

Website interface and usage

The user-friendly web interfaces provided in RMDisease
enable the search, browse and download RNA modifica-
tion associated-SNPs by modification type, gene, disease,
chromosome region, RsID and post-transcriptional regula-
tions. A genome browser was integrated for interactive ex-
ploration of genome regions of interest. All data provided
in the RMDisease database can be freely downloaded. For
the convenience of users, detailed instructions on how to
use RMDisease were placed in the ‘help’ page. RMDisease
is freely accessible at: www.xjtlu.edu.cn/biologicalsciences/
rmd.

Case study: MATR3

MATR3 provides structural support for the nucleus and
aids in several important nuclear functions. A mutation on
MATR3 with Rs ID: rs185734839 at chr5:138 665 490 is
known to be associated with ‘Distal myopathy’ from GWAS
study according to the ClinVar database. As an anony-
mous SNP located on 3′ untranslated region, this mutation
doesn’t affect the encoded protein sequence; however, it can

directly destroy a known m6A RNA methylation site lo-
cated at the same position, which was previously detected
by two MAZTER-seq experiments in human ESC cell line
(48). Post-transcriptional annotations suggest that, the m6A
site eliminated by rs185734839 falls within the target re-
gions of RNA binding protein CSTF2 and four microR-
NAs (miR-24, miR-1, miR-206 and miR-613), which pro-
vided potential functional circuits of the RNA methylation.
It should be of interests to explore whether the methyla-
tion status of MATR3 can significantly affect its biologi-
cal functionality, especially with respect to the disease, RBP
and miRNAs mentioned previously. Additional case studies
were provided in the Supplementary Materials and Supple-
mentary Table S4.

CONCLUSIONS

An increasing number of biological mechanisms and dis-
ease mechanisms have been associated with the epitran-
scriptome, which consists of more than 100 different types
of RNA modifications (91) at tens of thousands of lo-
cus in the human transcriptome. To systematically un-
veil the linkage between genetic factors and their respec-
tive epitranscriptome disturbance, we developed RMDis-
ease, a database of genetic variants with potentials to al-
ter eight types of widely spread transcriptome modifica-
tions, with emphasis on epitranscriptome disease pathogen-
esis. RMDisease revealed for the first time the impacts of
genetic variants on six types of RNA modifications (m5C,
m1A, m5U, �, m6Am and Nm), and offered substantial im-
provements over existing works for m6A and m7G (17,18).

RMDisease and m7GDiseaseDB (92) used the same in-
ference method. Both databases were based on m7GFinder
(74), which integrates the sequence as well as the genomic
features. The main different between them is that, a different
scoring system was implemented in RMDisease (see Ma-
terials and Methods section), which penalizes direct muta-
tion of a putative m6A site and makes the association level
(AL) fall within the range of 0 to 1. Additionally, RMDis-
ease integrated the results obtained from another m7G
predictor iRNA-m7G (93), and use it as an independent
reference. There exists major difference between m6AVar
(17) and RMDisease for m6A-associated SNPs. Besides the
aforementioned differences between m7GDiseaseDB and
RMDisease, i.e. a different scoring framework and extra in-
dependent tools integrated, RMDisease also provides the
statistical significance of the predicted associations, and was
based on more accurate m6A predictor WHISTLE (42) and
with more reliable epitranscriptome datasets integrated. A
total of 12 325 m6A sites that can be affected by SNPs were
found to be shared between RMDisease and m6AVar (see
Supplementary Figure S1 for more details).

Previous studies have shown that there exist snoRNPs
that can guide the formation of Nm and Psi with the base
pairing mechanism (94–98). To the best of our knowledge,
none of the existing prediction approaches for RNA mod-
ification explicitly considered this mechanism, which may
undermine their prediction capability. Indeed, sequence-
based predictors for pseudouridine sites without consider-
ing the base-paring mechanism between target RNAs and
snoRNPs yielded very limited accuracy (lower than 80%)
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Table 1. RM-SNPs collected in RMDisease

Germline mutation Somatic mutation Total

Modification type Confidence level Loss Gain All Loss Gain All Loss Gain All

m6A High 1405 - 1405 4276 - 4276 5681 - 5681
Medium 13118 - 13118 33666 - 33666 46784 - 46784

Low 38 654 692 161 4304 4465 199 4958 5157
m1A High 104 - 104 61 - 61 165 - 165

Medium 856 - 856 3134 - 3134 3990 - 3990
Low 1066 2654 3720 5730 9858 15588 6796 12512 19308

m5C High 596 - 596 1518 - 1518 2114 - 2114
Medium 11350 - 11350 28682 - 28682 40032 - 40032

Low 1338 3862 5200 6448 7769 14217 7786 11631 19417
� High 3 - 3 19 - 19 22 - 22

Medium 412 - 412 1271 - 1271 1683 - 1683
Low 1133 2726 3859 4324 13987 18311 5457 16713 22170

m7G High 10 - 10 82 - 82 92 - 92
Medium 253 - 253 922 - 922 1175 - 1175

Low 1511 745 2256 9685 11614 21299 11196 12359 23555
Nm High 4 - 4 21 - 21 25 - 25

Medium 85 - 85 530 - 530 615 - 615
Low 0 0 0 0 0 0 0 0 0

m5U High 12 - 12 0 - 0 12 - 12
Medium 14 - 14 38 - 38 52 - 52

Low 350 703 1053 433 3497 3930 783 4200 4983
m6Am High 12 - 12 2 - 2 14 - 14

Medium 24 - 24 132 - 132 156 - 156
Low 220 1598 1818 82 3205 3287 302 4803 5105

Note: RM-SNPs are further classified into two categories: (i) Direct: a SNP directly alters the modifiable nucleotide, leading to the loss of a known or
predicted RNA modification site, or alters an non-modifiable nucleotide into one that can be modified. (ii) Indirect (within 41 bp): a SNP alters a nucleotide
within the 41 bp flanking window of an RNA modification site (but not directly the modifiable nucleotide itself), causing significant increase or decrease in
the probability of RNA modification. We considered only SNPs within the 41bp window for possible indirect effects. This is because most existing RNA
modification prediction methods chose to be based on 41bp sequence or less (67–71,73,108). Increasing the length considered here may not help improve
the completeness of the results but add substantially the computation load. Additionally, the Nm-SNPs of low confidence were not predicted due to the
tremendous search space (Nm can happen to all nucleotide) and its relatively low abundance in the human transcriptome.

Table 2. Disease-associated RM-SNPs collected in RMDisease

Disease-associated RM-SNPs

ClinVar GWAS

Modification type SNP source Total RM-SNP SNP Disease Gene SNP Disease Gene

m6A dbSNP151 15 215 989 400 453 148 77 117
TCGA 42 407 332 187 164 0 0 0

m1A dbSNP151 4680 326 208 247 29 27 29
TCGA 18 783 217 175 139 0 0 0

m5C dbSNP151 17 146 994 397 450 128 67 94
TCGA 44 417 318 140 130 0 0 0

� dbSNP151 4274 238 208 207 35 32 35
TCGA 19 601 51 63 41 0 0 0

m7G dbSNP151 2519 183 141 166 25 22 25
TCGA 22 303 41 63 33 0 0 0

Nm dbSNP151 89 5 5 5 0 0 0
TCGA 551 2 18 2 0 0 0

m5U dbSNP151 1079 40 40 39 8 8 8
TCGA 3968 32 44 20 0 0 0

m6Am dbSNP151 1854 83 75 77 4 4 4
TCGA 3421 31 16 27 0 0 0

(61,99), and there exists speculation that the sequence fea-
tures of pseudouridine sites may not exist at all (100). In-
corporating base-pairing information into the prediction
models are likely to further improve the prediction perfor-
mance. Nevertheless, the primary approaches implemented
in RMDisease are based on both sequence and genomic
features. For pseudouridylation, the PIANO method (101),
which was used in RMDisease as the primary prediction

approach, has achieved substantially better performance
than those based on sequence features only (92,101). One
possible explanation is that, since many biological features
are correlated, the base-pairing information may be in-
directly and inexplicitly captured by the model after in-
cluding additional genomic features, such as, secondary
structure of RNA and genomic conservation. Additionally,
our previous studies showed that, including additional ge-
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Table 3. Diseases associated with the most RM-SNPs

Disease name ClinVar study accession MedGen identifier Type #SNP

Hereditary cancer-predisposing syndrome RCV000129430.4 C0027672 m6A 58
Hereditary cancer-predisposing syndrome RCV000129430.4 C0027672 m1A 14
Hereditary pancreatitis (PCTT) RCV000468581.1 C0238339 m5C 88
Hereditary cancer-predisposing syndrome RCV000129430.4 C0027672 � 12
Cardiovascular phenotype RCV000249770.1 CN230736 m7G 7
Adenocarcinoma of lung RCV000439229.1 C0152013 Nm 1
Adenocarcinoma of lung RCV000439229.1 C0152013 m5U 8
Leigh syndrome (LS) RCV000268982.1 C0023264 m6Am 4

Figure 2. Comparing the PhastCons scores of RNA modification-associated and non-associated SNPs. The sites where RNA modification-associated
variants localized were more conserved than non-associated variants for all the eight transcriptome modifications considered in RMDisease.

nomic features can effectively improve the accuracy of a
predictor, for example, for m6A on mRNAs (42), lncR-
NAs (102) and introns (103), as well as for m1A (77), Pseu-
douridine (101) and m7G (74) site prediction. It may be
worth noting that, although existing methods did not ex-
plicitly model the base-pairing mechanisms between target
RNAs and snoRNPs, they may still vaguely capture the
relevant patterns. For example, a previous study showed
that there exist snoRNAs that contain two conserved se-
quence motifs, namely box C (RUGAUGA) and box D
(CUGA), and the 2′-O-methylation occurs on the target
RNA precisely five nucleotides upstream of the box D. Se-
quence with the corresponding nucleotide contents should
show higher probability for 2′-O-methylation. However, if
there exists other more prevalent mechanisms, this relative
weak pattern may not be detected, leading to false pre-
diction related to the sites formed from this mechanism.
Meanwhile, for snoRNP-guided RNA modification sites,
changes due to mutation on these small RNAs cannot be
captured by the analysis pipeline of RMDisease; similarly,
changes due to mutation of key RNA modification en-
zyme genes, such as writers (e.g. METTL3 and METTL14)
and erasers (e.g. FTO and ALKBH5), were not covered
in this database, either. However, those mutations can po-
tentially disturb the epitranscriptome at a much greater
scale.

It is also worth noting that substantial discrepancy has
been observed among different epitranscriptome profiling
approaches, which can capture different bias (104–107). To
minimize the impact of technology usage, special efforts
have been made in this study to obtain the most compre-
hensive collection of the RNA modification sites including
those generated from different technologies (Supplemen-
tary Table S1). Multiple machine learn models were trained
with these datasets for each RNA modification to produce
the most reliable results out of the data that is available.

In summary, RMDisease will serve as a useful resource
for studies of genetic factors concerning the epitranscrip-
tome regulatory circuits and their potential roles in patho-
genesis.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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