A RTl C L E W) Check for updates

Attention-based multi-label neural networks for
integrated prediction and interpretation of twelve
widely occurring RNA modifications

Zitao Song® "2, Daiyun Huang® 23°® Bowen Song"*°, Kungi Chen®?, Yiyou Song?, Gang Liu', Jionglong Su®,
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Recent studies suggest that epi-transcriptome regulation via post-transcriptional RNA
modifications is vital for all RNA types. Precise identification of RNA modification sites is
essential for understanding the functions and regulatory mechanisms of RNAs. Here, we
present MultiRM, a method for the integrated prediction and interpretation of post-
transcriptional RNA modifications from RNA sequences. Built upon an attention-based multi-
label deep learning framework, MultiRM not only simultaneously predicts the putative sites of
twelve widely occurring transcriptome modifications (m®A, m'A, m5C, m5U, méAm, m’G, ¥,
[, Am, Cm, Gm, and Um), but also returns the key sequence contents that contribute most to
the positive predictions. Importantly, our model revealed a strong association among different
types of RNA modifications from the perspective of their associated sequence contexts. Our
work provides a solution for detecting multiple RNA modifications, enabling an integrated
analysis of these RNA modifications, and gaining a better understanding of sequence-based
RNA modification mechanisms.
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ost-transcriptional RNA modifications increase the struc-

tural and functional diversity of RNA molecules and reg-

ulate all stages of RNA lifel. Precise identification of RNA
modification sites is therefore of crucial importance to under-
standing the functions and regulatory mechanisms of various
RNAs. More than 100 different types of RNA modifications have
been identified?, and among them, N®-methyladenosine (m°A) is
the most common eukaryotic mRNA modification. MA occurs
on nascent pre-mRNA, regulating its stability and translation. It
is involved in many biological processes such as the circadian
clock, differentiation from naive pluripotency, and the heat shock
response. It also plays various roles in disease pathogenesis such
as carcinoma, breast tumor, gastric cancer, and anti-tumor
immunity. Besides m°A, there are also a number of RNA mod-
ifications with crucial biological functions. For instance, N!I-
methyladenosine (m!A) can block the Watson-Crick interface
and is vital for tRNA stability and the replication of HIV-1.

To date, a number of computational approaches have been
proposed for in silico prediction of RNA modification sites from
the primary RNA sequences, including: the iRNA toolkits3-11,
SRAMP!2, DeepPromise!?, WHISTLE!4, Gene2vec!®, m6A-
Atlas'®, RMDisease!’, PEAIS, PPUS!%, BERMP20, m5Upred?],
and m6AmPred?2. Special attention has also been paid to the
prediction of RNA modifications in introns?3, IncRNAs?4 as well as
various tissues and cell lines?>~27. Together, these works greatly
advanced our understanding of the localization of multiple RNA
modification types in different species under various conditions?3.
However, existing approaches suffered from the following
limitations.

Firstly, most existing studies only focused on a single RNA
modification type, mainly m®A, but failed to support multiple
RNA modifications simultaneously through an integrated
predictive model. Therefore, the study of the interplay between
different modifications is limited. The iRNA toolkit3-!! developed
primarily by Chen, Lin and Chou are the earliest as well as the
most comprehensive approaches that support the prediction of
various RNA modifications from RNA sequences and have been
widely adopted as the gold standard for benchmarking the per-
formance of different RNA modification prediction methods.
However, the iRNA toolkit was presented in the form of multiple
independent studies, each targeting a single modification. The
iMRM web server2? was aimed to support five RNA modifications
simultaneously with a friendly web graphical user interface;
however, it is still based on five independent binary predictors
corresponding to the five RNA modifications, respectively, with-
out considering potential interactions among different modifica-
tions. Given the intrinsic biochemical and biophysical properties
of different RNA modifications, the predictive framework estab-
lished for one type of modification can often be conveniently
migrated for the prediction of another modification. It is thus
beneficial and efficient to test the computational framework on
multiple RNA modifications simultaneously. Very recently, by
taking advantage of the generative adversarial network (GAN), the
MR-GAN approach was developed to predict eight RNA
modifications®0. However, some of the modifications supported
may be rare modifications, such as m!G (only 29 sites), m*G
(only 59 sites), and D (only 162 sites)3Y, whose wide occurrence
in human transcriptome has not yet been confirmed. Given a large
number of negative (non-modifiable) sites of such rare RNA
modifications, the sequence-based prediction is likely to produce a
substantial proportion of false-positive predictions in practice and
should be used with extra caution.

Secondly, most existing works relied on a limited amount of
data from a single source (a single database or dataset generated
from a single experiment), failing to fully take advantage of the
available epi-transcriptome information. For example, the wide

occurrence of m°U modification has been previously confirmed
with thousands of m°U sites reported by two different approaches
(miCLIP and FICC-seq)3!. Nevertheless, MR-GAN used only
30 sites for its training, which is likely to seriously limit its pre-
dictive capability for this specific modification. In addition, sub-
stantial discrepancies have been reported previously between
different epi-transcriptome profiling technologies, e.g., for m>C32
and ¥33. Thus, it is crucial to take advantage of the data generated
from multiple orthogonal technologies to minimize the potential
technological bias whenever such datasets are available.

Thirdly, most of the work in the field, such as SRAMP!2 and
iMRM?? focused on prediction accuracy but failed to provide a
clear and intuitive interpretation of their prediction results.
Although some existing approaches carefully interpreted their
trained predictive model?”-34, to the best of our knowledge, none
of the existing works provided insights into their decision-making
process for individual predictions. Recent advances in inter-
pretable RNA/DNA models enabled the extraction of low-level
CNN kernels and visualizing them as position weight matrices
(PWM). These patterns, however, provide only vague insights,
especially for multiple-layer DNNs, and cannot provide nucleotide
level interpretation. However, it remains of significant interest to
identify the critical sequence contents that directly contribute
to positive RNA modification predictions, which should help
facilitate our understanding of the sequence-dependent forming
mechanisms of individual RNA modification sites.

Lastly, a predictive framework has not been developed for some
RNA modification types such as m®Am, even though its base-
resolution epi-transcriptome profiling technology miCLIP has been
developed, and the profiling data is publicly available.

For these reasons, there is strong motivation to take advantage
of state-of-the-art deep learning techniques to develop a unified
predictive framework that supports multiple RNA modifications
by integrating datasets generated from multiple technologies.

We present here MultiRM, an attention-based multi-label
neural network approach for integrated prediction and inter-
pretation of RNA modifications from the primary RNA sequence
(or the corresponding DNA sequence). Twelve RNA modification
types are supported by our model, including m®A, m'A, m°C,
m°U, m°Am, m’G, ¥, I, Am, Cm, Gm, and Um. To the best of
our knowledge, these are the only widely occurring RNA mod-
ifications that can be profiled transcriptome-wide with existing
base-resolution technologies, which are highly desired char-
acteristics of RNA modification for reliable large-scale prediction.
The multi-label architecture of our approach enables accom-
modation of the shared structure of different modifications while
fully exploiting their distinct features. As some modifications are
still more abundant than the others, to handle the imbalanced
training data issue in multi-label learning, online hard examples
mining (OHEM)? and Uncertain Weighting®® were utilized.
Some widely adopted state-of-art machine learning algorithms
XGBoost3” and CatBoost>® were also implemented as the
benchmarks. Importantly, we used the integrated gradient (IG)3°
and the attention weights*® to gain insights into the trained
overall model and to explain every individual prediction. Finally,
a web server was developed and made freely accessible to serve
the research community.

Results

The MultiRM framework. Our framework predicts twelve types
of widely occurring RNA modifications using a deep neural
network, as shown in Fig. 1. Given a set of base-resolution
modifiable sites, MultiRM learns the mapping between the site
sequence context and the modification type. Once this mapping is
learned, the attention mechanism and IG method enable us to
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Fig. 1 A graphic illustration of the MultiRM model architecture. The model consists of an embedding module and an LSTM-Attention block to extract and
learn useful features. Then, features filtered by attention are fed into a multi-label module to predict RNA modifications simultaneously. Conv1D stands for
1D convolutional layer; Pool1D stands for 1D max-pooling layer; FC stands for fully connected layer.

interpret the model and extract the sequence content that con-
tributes the most to the positive prediction, the sequence motif.
The proposed integrated model using a multi-label framework is
also presumed to benefit learning the underlying association
among different RNA modifications.

MultiRM consists of an embedding module representing the
input RNA sequences using the inherent short- and long-range
interactions among nucleotides. The embedded representation is
fed to an LSTM layer to extract the underlying sequence features
shared by all modifications. Then, the attention mechanism
enables the model to focus on the relevant region of the input
RNA sequence for each specific modification type as needed.
Finally, the multi-label module containing two fully connected
(FC) layers predicts the multiple modifiable sites simultaneously.
The framework is trained using a cross-entropy loss enhanced by
OHEM and Uncertain Weighting.

MultiRM performance. The primary purpose of our study is to
establish an interpretable predictor that could achieve state-of-
the-art accuracy in the identification of multiple widely occurring
RNA modifications from the primary RNA sequences.

We firstly tried to optimize the length of the input sequences
according to AUG, (b stands for binary). AUG,, is the area under
ROC curves calculated based on the positive and the correspond-
ing negative samples (e.g, A for m'A) of each modification.
Using the Word2vec embedding, we evaluated our multi-label
model with 21-bp, 51-bp, and 101-bp RNA sequences as the
input. As shown in Table 1, the input of the 51-bp sequence
obtained the best average performance of all the modifications,
and this setting also returned the best performance on six out of
the twelve RNA modifications tested. It may be worth mentioning
that the 51-bp of the input sequence is also optimal for the
XGboost method (Supplementary Table 1).

Subsequently, to address the unbalanced training data problem,
we implemented OHEM, uncertainty weighting (UW), and focal
loss on our optimized multi-label model and tested their
performance with 51-bp of input sequences. Improved AUC,
values based on the optimized model were then achieved, as
shown in Table 2. Both OHEM and UW were beneficial to some
modifications. For example, OHEM improved the m’G predic-
tion by 0.08 of the AUC, score, and UW raised the AUC, for

m!A by 0.06. After we combined both of them, it helped to
enhance the average AUC, score by 0.0145.

With the optimized settings (51-bp input, UW + OHEM), we
then compared the newly developed approach MultiRM with
the baseline approaches and other embedding techniques. The
optimized hyper-parameters for each model to be compared can
be found in Supplementary Table 2. As seen in Table 3, the newly
proposed approach MultiRM obtained the best mean and median
performance with AUC, of 0.8361 and 0.8581, respectively, and
achieved the best performance on six of the twelve RNA
modifications considered (Am, Cm, m°U, m®A, ¥ and I) with
an average ranking of 1.667 among the five approaches tested.
The widely adopted XGBoost algorithm obtained the best
performance on four modifications (Gm, m!'A, m°C, and m’G)
and achieved the mean and median performance with AUC;, of
0.8035 and 0.8122 with an average ranking of 2.25 among the five
approaches considered.

Subsequently, we selected the optimal thresholds for each
modification with the largest G-Mean*! value based on their
respective ROC curves. The corresponding performance evalua-
tion metrics, including Sensitivity (Sn), specificity (Sp), accuracy
(Acc), and Matthews correlation coefficient (MCC) for each
modification, was calculated and provided in Table 4. The
precisions and recalls (PRs) curves and the receiver operating
characteristic curves (ROCs) curves of the MultiRM method are
provided in Supplementary Figs. 1 and 2. Please refer to
Supplementary Table 3 for the performance metrics of MultiRM
under the scheme of multi-label classification*2.

Interpretation. So far, the results have emphasized the perfor-
mance of our method in terms of classification. To gain insights
into the driving features behind the predictions, we applied
techniques that are capable of providing model interpretability so
as to identify key input sequence contents that are significant for
predicting RNA modifications (see “Methods”). The sequence
contents within the attention have a greater impact on RNA
modifications, and mutations within these regions are more likely
to lead to the gain or loss of RNA modification sites, as shown in
Supplementary Fig. 3.

Moreover, we aggregated and examined the consensus motifs
that played a key role in the MultiRM model. Interestingly, many
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Average Rank

2.250
4.250
4167

2.667
1.667

0.8035
0.7030
0.7273
0.7921

Average AUC,
0.8361

0.6112
0.5520
0.5116
0.5908
0.6698

0.7956
0.8056
0.6452
0.7216

0.8528

m’G

0.6796
0.5528
0.4968
0.5284
0.6772

mSAm
0.8668
0.7604
0.8324
0.9276
0.8912

méA
0.8120
0.8116
0.7272
0.7472
0.8558

m3U

0.9300
0.8684
0.8592
0.9404
0.9480

m3C
0.9096
0.7032
0.7732
0.8892
0.9056

0.8604
0.7100
0.7548
0.8404
0.7792

mlA

0.7608
0.6436
0.8004
0.8916
0.878

Tm

0.9500
0.6672
0.9304
0.8942
0.9256

Gm

0.8124
0.7736
0.7872
0.8352
0.8604

Cm

0.6536
0.5880
0.6088
0.6984
0.7892

Table 3 Comparing MultiRM to baseline approaches under AUC,,.
Am

HMM + LSTM -+ Attention

Model

XGBoost

CatBoost

CNN + LSTM + Attention
MultiRM

Table 4 Performance summary of MultiRM.

Modification Sn Sp Acc McCC AUC, AUC,,

Am 0.72 084 078 056 0.79 0.90
Cm 092 072 0.82 0.65 0.86 0.97
Gm 090 088 089 0.78 0.93 0.98
Um 0.86 078 082 0.64 0.88 0.94
m'A 0.64 080 072 0.45 0.78 0.90
m>C 092 078 085 071 0.91 0.97
m5U 098 086 092 0.85 0.95 0.95
meA 0.82 078 080 0.60 0.86 0.99
méAm 0.88 078 0.83 0.66 0.89 0.97
m’G 076 054 065 031 0.68 0.97
v 092 076 084 0.69 0.85 0.94
| 0.68 0.72 0.70  0.40 0.67 0.89
Mean 0.83 0.77 0.80 0.61 0.84 0.95
Median 0.87 078 082 0.645 0.86 0.96

Sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews correlation coefficient (MCC)
were all calculated under the binary scenario, i.e., with the original nucleotide of the modification
as the negative samples. AUC, was computed from the positive and the corresponding negative
samples of each modification (with b representing binary), while AUC,,, was calculated using all
other labels, including all other modifications and all the unmodifiable nucleotides as the
negative (with m representing multiple).

of them matched the sequence patterns unveiled from conven-
tional motif finding methods DREME* and STREME*. To
further quantify the similarity between the motifs obtained
through MultiRM and DREME/STREME, motif comparison tool
TOMTOM* was applied to produce a p-value. Sufficient small p-
values indicate a certain degree of consistency (see Fig. 2). It may
be worth mentioning that MultiRM constructed the motifs of an
RNA modification using the 6-mers of highest attention weights,
which does not necessarily contain the RNA modification site
itself. This is consistent with most de novo motif finding
algorithms such as DREME*? and STREME*4.

A major advantage of the proposed integrated model is the
capability to learn the underlying association among different
RNA modifications. It was shown previously that there exist clear
evolutionary and functional cross-talk among different post-
translational modifications of protein*® and among different
histone and chromatin modifications?’. Conceivably, such
association may also exist at the epi-transcriptome layer among
different RNA modifications. To better understand the inherent
shared structures among different RNA modifications, we
extracted the weights of the feedforward neural network within
the attention mechanism. These weights were twelve vectors
corresponding to twelve RNA modifications, respectively, and
were jointly learned together with all other components of the
proposed model. The Pearson’s correlation (p) of each pair of
vectors was calculated to reveal the relevance of two arbitrary
RNA modifications unveiled by the integrated prediction model.
A surprising finding is the RNA modifications all show strong
and significant positive associations among each other, including
those, originated from different nucleotides (see Fig. 3). It
suggests that there exist regions that are intensively modified by
multiple RNA modifications, which are likely to be the key
regulatory components for the epi-transcriptome layer of gene
regulation. Importantly, the sequence signatures of these key
regulatory regions are largely shared among different RNA
modifications (including those that modify different nucleotides)
and were successfully captured by our model. The most strongly
associated modifications originated from the same nucleotide,
such as m°C and Cm (p = 0.895, p-value = 3.81E—36), I and m!A
(p = 0.931, p-value = 9.57E—45), ¥ and m°U (p = 0.908, p-value
= 5.47E—39). Notably, m®A showed only mild association with
other modifications, implying its relatively special role in post-

Bold indicates the best performance in comparison.
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Fig. 2 Motif matching. Some motifs identified from MultiRM are similar to those identified from conventional motif analysis (DREME and STREME).

p value* was calculated using TOMTOM by utilizing a null model containing MultiRM's motif columns from all the columns in the set of DREME and
STREME motifs. p value## in DREME was calculated by a one-sided fisher's exact test. p value### in STREME was calculated by a one-sided binomial test.
The motifs within the blue dashed anchor boxes were extracted to do pair comparisons. |G scores were calculated by the average of the contribution scores
of each nucleotide obtained by the integrated gradients method. Accession codes for the data used to generate this figure are found in Table 5.
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Fig. 3 Association of RNA modifications revealed by MultiRM. The RNA
modifications considered in MultiRM all show positive relationships among
one another, suggesting that there are some regions intensively modified by
multiple RNA modifications, which are likely to be key regulatory
components for the epi-transcriptome layer of gene regulation.
Modifications on the same nucleotide are likely to be more strongly
associated with each other, such as m>C and Cm (p = 0.895, p-value =
3.81E—36), | and m'A (p = 0.931, p-value = 9.57E—45), ¥ and m°U (p =
0.908, p-value =5.47E—39). The two-sided Pearson correlation test was
performed using the exact distribution of the sample correlation coefficient.
Statistical significance was calculated by the probability that abs(p’) of a
random sample x’ and y’ drawn from the population with zero correlation
would be greater than or equal to abs(p). The weights used to generate this
figure can be found in GitHub's repository.

transcriptional regulation as the most abundant mRNA mod-
ification. It is also worth noting that the above analysis did not
consider the context-specificity of RNA modifications (or the
dynamics of RNA modification across different biological
conditions). It does not directly suggest that different RNA
modifications should co-occur in the same biological context, or

they work with synergetic effects, even though the latter is highly
probable as what we have seen in the epi-genetic regulation of
histone modifications.

To further validate the above finding, we calculated the
pairwise distance between two arbitrary RNA modifications and
compared it to the random. Although we could not completely
rule out the possibility of experimental bias, e.g., polyA selection,
we did observe strong aggregation effects among most RNA
modifications considered in this analysis. It is clear that the
distance between two arbitrary RNA modifications is likely to be
closer than random (Supplementary Fig. 4).

MultiRM web server. A web server with a friendly graphical user
interface was constructed to properly share the constructed
MultiRM model among the research community. It takes the
RNA sequence as input and returns the predicted RNA mod-
ification sites together with the key sequence contents that drive
the positive predictions (Fig. 4). The statistical significance of the
prediction was also provided by comparing it to the results
generated from the negative sites. For online prediction, a noti-
fication email can be optionally sent to the provided email
address when the job is finished. For off-line prediction, the
trained MultiRM model together with Python codes can be
downloaded for use on a local computer.

Discussion

In this work, we developed a multi-label model that can simul-
taneously predict the twelve widely occurring RNA modifications
and present the key sequence components that contributed most
to the predictions.

In order to fully exploit the inherent structure of the input
sequence, we experimented with three different embedding
techniques on our model and found Word2vec drastically
enhance its predictive capability. We also found that inputting
longer RNA sequences may not necessarily lead to higher pre-
diction accuracy. To deal with the imbalanced label problem, we
implemented OHEM and Uncertain Weighting strategies. It was
encouraging to find the overall performance of our MultiRM
model achieved is better than the classic machine learning model
XGBoost and some start-of-the-art multi-label learners.
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***************Visualize modlfication sites**************
Kok kkkhkkkkhkkhkhkrhkkrhkx k] ()] =150 nt*rFrkkkkkkkkkrkkkkrkkkrk
Origin ATACCTGCTGATTCCCTTCCCCTCTGAACCCCCAACACTCTGGCCCATCG
Am****
Cm* ***
Gm* * **
Um****
mlA***
m5C***
m5U* * *
MOA* **
moAm* *

*******************Visualize Attention*******************

KAKAA K AKX I AKX R A AR A A h A A * ARk K*] ()] =] 50 nLFxrrxrrxdhxrhhrhhrhhxrkhxhr

Origin ATACCTGCTGATTCCCTTCCCCTCTGAACCCCCAACACTCTGGCCCATCG
Am**** ——ACC-GCT--———————=——=—= TGA----- CAA-——————————————
Cm*x** % —— e
Gm**** ————CTGCTG-TTC-——-————————— ACCCCCAACACT--GGCC--TCG
Um** %% ——— TGA-————————- CTC-GAA-CCCCA-CAC-----——- ATCG
mlA*** ———CCT----—————————————~— TGA-———————————- TGGCCC----
mSCH*** ———————— TGATTCC-TTCCCCTCT----———————————~- GGC---TCG
M5U*** ——mmm e GAT---—-————- CTC-GAA-CCCCA-CAC————-——- ATCG
m6A** K
MOAM* X - —m
m7G*~k g g
Psi*** ———oo—o TGA-—-——-——-- CTC-————————————m——m o=
AL OT* ¥ m oo ACA---TGG----—--

Fig. 4 Output of the MultiRM web server. The web server supports site prediction and result interpretation for twelve widely occurring RNA modifications
(meA, mlA, m5C, mSU, mAm, m’G, ¥, I, Am, Cm, Gm, and Um) from RNA (or DNA) sequences. The figure shows the predicted RNA modification sites
(upper panel) and the sequence components that contributed most to the positive predictions (lower panel) between the 101st and 150th nucleotides of an
input sequence. The predicted probabilities, statistical significance, and attention scores of RNA modifications can all be downloaded as separate files from
the web server. At the 123" nucleotide, multiple RNA modifications originated from U were predicted with a p-value less than 0.05, which, to some degree,
reflected the associations among different RNA modifications unveiled previously (see Fig. 3).

We carefully curated the training and test data of our predictive
models using only high-quality epi-transcriptome profiles gen-
erated from multiple orthogonal technologies and multiple stu-
dies. Given the discrepancy among the epi-transcriptome
profiling results of multiple technologies, this remedy is of crucial
importance to ensure the robustness and reliability of the
predictor.

To best share the newly constructed RNA modification site
predictor, a web server was constructed. Besides a friendly user
interface and detailed documentation for online usage, it also
hosts the trained MultiRM models and the Python codes, which
may be downloaded to local computers for command-line usage.

Although MultiRM is capable of predicting twelve different
types of RNA modifications, it is currently restricted to humans
only and has not been extended to other model organisms. This is
mainly due to the lack of availability of base-resolution epi-
transcriptome profiling data for other organisms. It would be
intriguing to test the performance of MultiRM on other species,
such as mice and yeast, as well as to incorporate new emerging
transcriptome modifications, e.g., ac4C*4% and hm>C>0 when
such data is available in the future.

It is important to note that, MultiRM currently does not
consider the distinct abundance of different RNA modifications.
So even under the same setting (p-value cut-off), the proportion
of false-positive predictions varies substantially between the more
abundant RNA modifications (such as m®A) and the less abun-
dant ones (such as m!A), i.e., with a much higher false-positive

rate for the less abundant RNA modifications. The problem is
partially due to the limited consistency among existing bio-
technologies for profiling RNA modifications. For example, while
more than 10,581 m>C sites were reported from bisulfite
sequencing, only 617 and 1084 m°C sites were reported by AzalP
and miCLIP, respectively32, probably due to their different
technical preference and sensitivity. We provided in Supple-
mentary Fig. 5 the performance metrics of the proposed MultiRM
model on unbalanced sample size, which reflects our current
knowledge of the modifications’ distribution in real-world;
however, it is important to note that the number of RNA mod-
ification sites collected are strongly affected by the detection
sensitivity of biotechnology and the available experimental data
rather than their true abundance. More reliable false discovery
rate control would be desired in the future when the overall
abundance of these RNA modifications is more readily available.

Our model revealed for the first time the positive associations
among all the twelve RNA modifications in terms of their
sequence preference. It should be of immediate interest to study
the key regulatory regions of general RNA modifications and epi-
transcriptome regulation. Of equal interest is their dynamic cross-
talk under different biological conditions, which calls for the
integrated prediction of condition-specific epi-transcriptome
profiles when such data is more abundantly available. For
example, by extending related studies?>>~27 under the multi-label
learning framework. Previously, due to the lack of epi-
transcriptome datasets in matched biological conditions, cross-
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Table 5 List of base-resolution epi-transcriptome profiling data.
Full name Short name Original base Site# (%) Technology (or Database) GEO Accession
N6-methyladenosine méA A 65,178(40.08%) mOA-CLIP-seq GSE71154
GSE86336
miCLIP GSE98623
GSE63753
Pseudouridine W u 3137(1.93%) y-seq GSE60047
Pseudo-seq GSE58200
CeU-Seq GSE63655
RBS-Seq GSE90963
1-Methyladenosine mlA A 16,380(10.07%) miCLIP GSE9S7908
m'A-MAP GSE102040
RBS-Seq GSE90963
m'A-seq GSE97419
GSE70485
N6,2’-O-dimethyladenosine mbAm A 2447(1.5%) miCLIP GSE122948
GSE78040
GSE63753
2'-O-methyladenosine Am A 1591(0.98%) Nm-seq GSE90164
RMBase>4 -
2'-0O-methylcytidine Cm C 1878(1.15%) Nm-seq GSES0164
RMBase>4 -
2'-0O-methylguanosine Gm G 1471(0.90%) Nm-seq GSE90164
RMBase>4 -
2’-0O-methyluridine Um u 2253(1.39%) Nm-seq GSES0164
RMBase>* -
5-Methylcytidine m°C C 12,936(7.95%) BS-seq GSE122260
7-Methylguanosine m’G G 1036(0.64%) m’G-seq GSE112276
5-Methyluridine m>U u 1696(1.04%) miCLIP & FICC-seq GSE109183
Inosine | A 52,618(32.36%) RADARS3 -
Am, Cm, Gm, and Um are sometimes combined together as 2'-O-methylation (or Nm).

talk of multiple RNA modifications was mainly studied via the
expression level of relevant RNA modification enzymes!.
Although the interactions among different RNA modifications
can partially be revealed from enzyme-based analysis, it is
important to note that the known enzyme genes have multiple
biological functions other than writing or erasing RNA mod-
ifications, which may contaminate the results. In contrast, direct
analysis of the epi-transcriptome profiles is likely to be more
reliable. With the advances in deep learning approaches, it should
be possible to dig more deeply and unveil the cooperative RNA
modification interactions and their soft sequence syntax, as has
been done in cooperative transcription factor regulation®2.

Methods

Raw data and preprocessing. The development of an RNA modification site
prediction model typically requires transcriptome-wide profiling data at base-
resolution for training and testing purposes. A selection of datasets was made,
prioritizing those derived from multiple studies and generated with different
technologies. Data generated from flawed technologies (such as ordinary RNA
bisulfite sequencing) or methods (such as ordinary MeRIP-seq combined with
motif search) were not used.

We ultimately obtained 20 epi-transcriptome profiles generated from 15
different base-resolution technologies for 12 different types of RNA modifications
(mfA, m'A, m5C, m5U, mbAm, m’G, ¥, I, Am, Cm, Gm, and Um), as shown in
Table 5. To the best of our knowledge, our data covered all the widespread RNA
modifications that can be profiled transcriptome-wide at base resolution. Special
attention was paid to construct the most reliable negative control data (non-
modified nucleotides) for the predictor. Negative sites were randomly selected from
the unmodified bases of the same transcript containing the positive sites.

The Inosine (I) sites were collected from the RADAR database®3, while Am,
Cm, Gm, and Um sites were collected from RMBase>* supplemented by those
reported by Nm-seq®>. When there are motifs representing modifications, i.e., the
DRACH motif of m°A and the BCA motif of m®Am, the motif was used to further
restrict the positive and negative data of the corresponding modification. For m°A,
because the reliability of the existing large number of base-resolution studies using
various techniques needs to be examined, a total of 87,616 m°A sites identified

8

previously (Supplementary Table 4) were only used indirectly by excluding them
from the negative m°A sites.

In the end, over 300k sites were collected. We separated the RNA sequences in
each class (corresponding to a type of RNA modification) into three sets, i.e., the
training set, validation set, and test set. Here, the training set is unbalanced across
different classes (modification types), i.e., the number of sites is different for
different RNA modifications, while the validation and test set have balanced
samples with sizes 150 and 50, respectively. In general, the hyper-parameters were
optimized based on the validation sets, while the reported final prediction
performance was achieved on the test set. Traditionally, K-fold cross-validation is
used to mitigate overfitting in many Machine Learning problems, especially for
those who have small training data. This is because using K-fold to validate a model
can better estimate how the results of the model will be generalized to an
independent data set, especially in a limited dataset, where a small test cannot
reflect the entire distribution of the data. In our scenario, however, we have ~300k
training data in total. Consequently, a 5% testing/validation set will already give us
a good estimate.

Embeddings. To develop high-precision computational methods, it is essential to
wisely represent or embed sequence data. Suppose we have raw data Ry = {x"}}_
where M is the number of sequences and each x™ € R is an RNA sequence. Each
entry x,i =1,2, ... ,L at position i is taking value from the alphabet 3~ =

{A, C, G, U, N} from a sequence of constant length L. We considered the following
three schemes to map the RNA sequences R, into the embedding spaces R’ .

Traditionally, one-hot>®%7 is a simple yet very effective encoding method to
represent sequence data. For each RNA sequence x € ¥, we map it by f: YR,
where f(A) = (1,0,0,0), f(C) = (0,1,0,0), f(G) = (0,0,1,0), f(U) = (0,0,0,1)
and f(N) = (0,0,0,0). After that, R, goes to R
R* is an RNA sequence.

Because of the ability to capture long-range interaction, Hidden Markov Model
is suitable for modeling sequence data. It has been successfully applied by
Seq2vec?8, which uses a neural network to speed up the parameterization in HMM.
It built a nonlinear feature embedding f: > R" which transforms each RNA
sequence x” into an n-dimensional vector. Besides, f is a composition of two

onehot = X" 1M, where each x™ €

nonlinear operators b : ZLHR‘M‘ and g: R* % R", such that,

f(x™) = g(b(x™))and b(x™) = [y, 4y, ... , 4y ], where each gy, summaries the
potential long-range interaction of different positions in x™, and g will aggregate
interaction information and a fixed dimensional embedding for the entire dataset.
In our work, we added the HMM layer before the recurrent module and multi-label
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module, forming an end-to-end solution from training to predicting
modification sites.

Since first invented by Mikolov in 2013, Word2vec® has enhanced the
performance of various NLP tasks. As a statistical language model, it follows skip-
gram and continuous-bag-of-words (CBOW) architectures and uses neural
networks to learn word embeddings based on context relationships. We trained our
own RNA embeddings by treating each RNA sequence as a sentence and the k
consecutive RNA nucleotides (k-mer) as words in that sentences. Mathematically,
we define a mapping from single nucleotides to the vector representation of k-mers
as f: Xt YLM1 which are then fed into the neural networks to obtain n-
dimensional embedding. It has been demonstrated in Gene2vec!” that 3-mers has
the best predictive performance on m°A sites. Therefore, in our work, we follow
that 3-mers convention to embed our input data. More specifically, a 3-nt sliding
window moves over 1001-nt sample sequences with stride 1-nt to create sequences
of 999 words with overlap. Each word corresponds to an index from the collection
of all possible 3-mer combinations (104 different combinations in our training
data). Then, Word2vec was implemented by Gensim package® with a five-word-
long window of neighboring words to learn the inherent relationship and generate
a 300-dimensional feature vector. Finally, each embedded RNA sequence is
converted into a 999 by 300 matrix.

Model design. In this work, two types of DNN architecture, convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) were utilized to learn the
sequence features of RNA modifications. Specifically, long short-term memory
(LSTM) was implemented to account for possible long-range dependencies of the
features.

The model mainly consists of three parts (see Fig. 1). The first module is an
embedding module that takes the one-hot encoding of RNA sequences as input and
embeds them by three different embedding techniques. Then, each embedding is
fed into an LSTM and a Bahdanau Attention Layer3®. Both the hidden states ;
inside of the LSTM layer and the learned feature representation y; are aggregated to
obtain attention weights for each target class. Then 12 different context vectors are
obtained by calculating the inner product of y; and each attention weight. It is
expected that these vectors can well compress the important information needed
for each prediction branch. The Multi-label module, which contains 12 parallel FC
layers with the ReLU activation function, maps each context vector to the
probability of each modification simultaneously. Dropout layers are used to
mitigate overfitting. The whole model is optimized by weighting binary cross-
entropy loss in different tasks.

Importantly, to assess the contribution of the embedding methods used in our
model, we exploited three variations of embedding. For one-hot encoding, a CNN
has added ahead and executed as part of the embedding module. Since the original
one-hot encoding of RNA sequences is a sparse input, CNNs will help extract
sequence patterns in a dense manner and generate high dimensional
representations of these motifs. Besides, pooling layers are utilized to trim less
informative features.

It is worth noting that the data among different labels (classes) was highly
imbalanced, i.e., the number of sites varied substantially between the more
abundant modifications (such as m°A and I) and the less abundant ones (such as
Am and Gm). Traditionally, this problem has been addressed in two ways. One
way is to alter the original imbalanced data to balance it using an oversampling
algorithm like SMOTE®!. Another potentially more effective way is to weigh the
loss of each class at the end of the network. Since our inputs are RNA sequences
that were rigorously generated, generating artificial RNA sequences may degrade
the credibility of the original dataset. Therefore, we focused on the second option.
As a benchmark, we first used a constant weight for each task based on the
Effective Numbers of Samples®2. Subsequently, we designed our multi-label model
to be self-paced by learning the weights of each task during training and only back-
propagated the samples with higher loss (OHEM)?* so that it could jointly
prioritize tasks and samples through the whole training process. We also tested the
performance of focal loss®?, which basically down-weights the loss assigned to well-
classified samples on the common binary cross-entropy loss.

Evaluation metrics. After training on the training set, we evaluated our model on
the validation set and test set. The classification performance was characterized by
the receiver-operating characteristic (ROC) and assessed by the area under the
ROC curves (denoted as AUROC or AUC), which is a non-parametric indicator
that reflects the performance of a model.

Specifically, we calculated two types of AUC: AUC, and AUC,,,. AUC, was
computed from the positive and the corresponding negative samples of each
modification (with b representing binary), while AUC,,, was calculated using all
other labels, including all other modifications and all the unmodifiable nucleotides
as the negative (with m representing multiple). Consequently, AUC, represents the
goodness of prediction for one particular modification versus its original non-
modifiable base, e.g., m!A vs. A, while AUC,, generalizes to all other cases,
including other modifications and non-modifiable bases. Although AUC,, is the
matched evaluation scheme for multi-label learning tasks, AUC,, was provided to
maintain comparability with existing works, most of which perform binary
classification with the unmodifiable original nucleotide as the negative samples. It
is worth noting that nucleotides other than the original one were also considered

when calculating AUC,,. Because it is straightforward to make correct negative
predictions according to the non-original nucleotide of a particular modification
(for example, the nucleotide C cannot form m°A), AUC,, is substantially higher
than AUC,,.

The widely adopted assessment metrics, including sensitivity (Sn), specificity
(Sp), accuracy (Acc), and Matthews correlation coefficient (Mcc), were also
implemented to assess the prediction performance, and can be expressed as,

TP N

- Sp= 1
S =N P T IN P )
TP + TN
Acc=—— T nd 2
CTTPYFPLENFTIN @
TPx TN — FPx FN
Mcc 3)

~ /(TP + EP)(TP + EN)(IN + FP)(IN + EN)

where TP represents true positive samples, TN represents true negative samples, FP
represents false-positive samples, and FN represents false negative samples. The
optimal threshold was chosen based on maximized G-mean®’ for each class to
classify the positive and negative samples of a particular modification. These
metrics were all calculated under the binary classification scenario, i.e., using the
positive and negative samples of a specific modification, and are thus comparable
to the reported performance in most of the existing works on RNA modification
site prediction. AUG,;, is used as the primary evaluation metric for its
nonparametric characteristics and comparability to the reported performance of
related works in the existing literature.

Statistical significance. The statistical significance of a predicted probability is
assessed by an upper bound of the p-value, indicating how extreme the observed
probability is among all the occurrences of the same nucleotide. It is calculated
from the relative ranking of the putative RNA modification sites, i.e., if only 1% of
nucleotides report a probability larger than a specific site, then the upper bound of
the p-value of this site is 0.01. This is used as the cut-off of the prediction. However,
it is important to note that the cut-off controls only type I errors. Even with the
same p-value cut-off, the proportion of false-positive predictions are still sub-
stantially different between the more abundant RNA modifications and the less
abundant ones.

Interpretation. In addition to the accurate prediction of RNA modifications, it is
often appealing to grasp the idea behind the model’s prediction. In our model, we
used attention weights and IG to explain visually how the model makes specific
decisions. Specifically, we focused on what our model valued most while making
different predictions and

acquired the nucleotide which contributed most while making the positive
prediction through attention weights and IGs.

Bahdanau attention“? was originally introduced as a solution to handle the long
input sequences of the sequence-to-sequence model. Here, we transplanted it to
our method by mapping the input RNA sequences to 12 context vectors. Since it
has access to the entire input RNA sequences and is capable of picking out specific
elements from the sequence to produce output, the mechanism thus gives the
model freedom to focus and place more or less attention on the relevant nucleotide
of the input RNA sequence for each prediction task as needed. Consequently, by
visualizing the attention weights, which represent the weights of each nucleotide of
the input RNA sequences in each prediction task, we can identify the most critical
part of the input sequences in our model while making different predictions.

By calculating the gradient of an output neuron with respect to its input, the
gradient-based attribution method can reflect how much the input features
contributed to a particular output through the networks. In our work, we used an
attribution method called IGs. Here, the target neuron of interest is the
classification layer of each modification. The IG computes the averaged gradients of
the output neuron when the input varies along a linear path from a baseline or
reference to the input. It measures the contribution of each input to modification
prediction and assigns higher scores to important nucleotides in the input
sequences. Based on the contribution scores in each input nucleotide position, we
visualized the attribution map as sequence logos where the height represents the
importance of that position in the prediction. The size of nucleotides in a positive
direction represents an important level in predicting the appearance of RNA
modifications.

Visualization of the attribution maps of each input sequence for a specific RNA
modification not only gives the important positions while making positive
predictions but also reveals the potential target motif (or recurring patterns) of its
corresponding modifications. In order to calculate the consensus motif contributed
most for each RNA modification, following a previous study®%, we accumulated the
attribution values in each position corresponding to all true positive samples with
prediction scores in the top 10%. Then, for each sample, we search for the top k
motifs across the attribution map by taking the highest mean scores in sliding
windows of the desired length, removing its neighborhood, and repeating again for
the next motif. After multiple sequence alignment, UMAP® was used to embed the
top-ranking motifs and DBSCAN®® was used to cluster these embedded motifs.
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Finally, we aggregated these motifs in each cluster by calculating their PWM and
visualized them using sequence logos.

Baseline performance. Since tree-based classification algorithms often have the
best off-the-shelf accuracy for many bioinformatics problems2%, in this work, we
compared our model with two gradient-boost decision trees, i.e., XGBoost?” and
CatBoost>®. XGBoost has been widely used for bioinformatics predictions. Cat-
Boost is used here because it has built-in techniques to deal with categorical
variables thus avoided the extra step to convert nucleotides to one-hot encoding in
this problem. The gradient-boost decision trees were used as multiclass classifiers
over all 13 classes, including the 12 wide occurring RNA modifications and the
non-modifiable nucleotide class. To generate optimal results, we searched the
hyper-parameters of each method by coordinated decent, and the optimized
choices were provided in Supplementary Table 2.

Attention-based DNNs. We trained our attention-based DNNs (see Model Design
subsection) over the short RNA sequences of 101-bp, 51-bp, or 21-bp windows. For
Word2vec (see Embeddings section), we pre-trained the RNA 3-mers over 1001-bp
sequence and then extracted the short RNA subsequence of the corresponding
length from it. For CNN and HMM, we designed them in an end-to-end manner
with the one-hot encoding of RNA sequences as the input. During training, we
used a mini-batch size of 128 as the input and trained on 1 NVIDIA RTX 2080Ti
over 100 epochs. In addition, we used an Adam optimizer®” and a mini-batch size
of 128 during training. Meanwhile, exponential and cosine annealing®® learning
rate decay were implemented for suitable models, and early stopping®® was
introduced when the generalization loss increased in five successive epochs to
prevent overfitting on the training data. Finally, the validation set was used to
search for the best hyper-parameters for a single model, and the test set was used to
choose the best model among various models with their best performance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data used in this study were already publicly available in the GEO database, RMBase,
and RADAR database. In GEO database, m°A data can be collected from GSE71154,
GSE86336, GSE98623 and GSE63753; Pseudouridine (¥): GSE60047, GSE58200,
GSE63655 and GSE90963; m!A: GSE97908, GSE102040, GSE90963, GSE97419 and
GSE70485; m6Am: GSE122948, GSE78040 and GSE63753; 2/-O-methyladenosine (Am,
Cm, Gm, Um): GSE90164; m>C: GSE122260; m’G: GSE112276; m°U: GSE109183. 2'-O-
methyladenosine data was also collected from the RMBase database under 2’-O-Me
[http://rna.sysu.edu.cn/rmbase/2-O-Methylation.php] tag. Inosine data was collected
from the RADAR database. All accession codes for data used are found in Table 5. All
processed sequence data is freely available on the MultiRM web server at www.xjtlu.edu.
cn/biologicalsciences/multirm. Detailed data profile information can be found in
Supplementary Materials. All data are available from the authors upon reasonable
request.

Code availability

The deep learning framework was implemented using Pytorch, and the Python codes can
be freely accessed at https://github.com/Tsedao/MultiRM”°. The user-friendly MultiRM
web server developed for easy access to our approach via a graphical user interface is at
www.xjtlu.edu.cn/biologicalsciences/multirm.
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