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Abstract

Motivation N6-methyladenosine (m6A) is the most prevalent RNA modification on mRNAs and lncRNAs. Evidence
increasingly demonstrates its crucial importance in essential molecular mechanisms and various diseases. With recent
advances in sequencing techniques, tens of thousands of m6A sites are identified in a typical high-throughput experiment,
posing a key challenge to distinguish the functional m6A sites from the remaining ‘passenger’ (or ‘silent’) sites. Results: We
performed a comparative conservation analysis of the human and mouse m6A epitranscriptomes at single site resolution. A
novel scoring framework, ConsRM, was devised to quantitatively measure the degree of conservation of individual m6A
sites. ConsRM integrates multiple information sources and a positive-unlabeled learning framework, which integrated
genomic and sequence features to trace subtle hints of epitranscriptome layer conservation. With a series validation
experiments in mouse, fly and zebrafish, we showed that ConsRM outperformed well-adopted conservation scores
(phastCons and phyloP) in distinguishing the conserved and unconserved m6A sites. Additionally, the m6A sites with a
higher ConsRM score are more likely to be functionally important. An online database was developed containing the
conservation metrics of 177 998 distinct human m6A sites to support conservation analysis and functional prioritization of
individual m6A sites. And it is freely accessible at: https: //www.xjtlu.edu.cn/biologicalsciences/con.
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Introduction
As sequencing technologies have advanced, the prevalence and
abundance of RNA modifications in the mammalian epitran-
scriptome have become increasingly evident [1–3]. Today, more
than 150 distinct biochemical modifications have been identi-
fied [4], among which N6-methyladenosine (m6A) has become
a research hotspot for its significance in essential molecular
mechanisms of eukaryotic species [5, 6]. This non-cap methyla-
tion of the adenosine base at the nitrogen-6 position was firstly
detected in the 1970s [7], and its functions have been intensively
studied during the past few years.

As the most abundant RNA modification on mRNAs and
lncRNAs, m6A RNA methylation plays important roles in a series
of essential biological processes. Tens of thousands of m6A
RNA methylation sites have been detected in the transcriptome,
suggesting a wide-ranging effect of this important modification
on the regulation of gene expression [8]. The translation effi-
ciency was found to be affected by m6A modification [9, 10],
for example, m6A impacts translation extension via modulating
the anticodon pairing rate of both tRNA and mRNA [9]. It also
recruits CCR4-NOT complex and is involved in the regulation
of histone modifications [11]. Studies also reported various bio-
logical functions that m6A modification participates, including
but not limited to translation, response to heat shock [12], DNA
damage [13] and embryonic development [14–16]. Meanwhile,
m6A dysregulation is found to be associated with various dis-
eases: for example, the m6A demethylase FTO is closely related
to the development of recessive lethality syndrome [17]. More
recent studies have also revealed that abnormal m6A regulation
may impact cancer development, such as breast cancer [18, 19],
prostate cancer [20] and liver cancer [21].

Three categories of m6A-related proteins have been iden-
tified—the writers, erasers and readers. m6A is produced co-
transcriptionally by the methyltransferase complexes (MTC),
also termed as ‘writers’, which include methyltransferase-
like 3 (METTL3) catalytic subunit [22], methyltransferase-like
14 (METTL14) [23], methyltransferase-like 16 (METTL16) [24],
VIRMA [25], ZC3H13 [26], RNA-binding motif 15 (RBM15) [5]
and Wilms tumor 1-associated protein (WTAP) [27]. METTL3
was first identified as a member of the MTC [28] and was
reported to be highly conserved in eukaryotes from human to
yeast [29] with versatile and important biological functions. In
mouse, METTL3 is closely related to cell division, reprogramming
and differentiation [16, 30]. Besides, METTL3 was found to be
responsible for spermatogenesis through meiosis regulation
and spermatogonial differentiation [31]. Inducer of meiosis 4
(IME4) is the ortholog of METTL3 in Saccharomyces cerevisiae
and Drosophila melanogaster. Deletion of IME4 in Saccharomyces
cerevisiae and Drosophila leads to defects in sporulation [32] and
lethal phenotype [33], respectively. Also, in Arabidopsis thaliana,
dysregulation of MT-A (ortholog of METTL3) causes embryonic
lethal [34]. In zebrafish embryos, knockdown of METTL3 and
WTAP results in the defection of tissue differentiation [27]. m6A
erasers like fat mass and obesity-associated protein (FTO) [35]
and AlkB homolog 5 (ALKBH5) [36] remove m6A methylation,
demonstrating that m6A methylation is a reversible process.
ALKBH5 is also responsible for the demethylation activity in
mouse: ALKBH5-deficient mice were found to have increasing
level of mRNA m6A, which leads to impaired fertility [36].
Additionally, ALKBH9B and ALKBH10B [37], which belong to
the AlkB family, act as the m6A demethylases in Arabidopsis
[38] and revert m6A to adenosine. Probing the function of
m6A readers is key to understanding how m6A modification

regulates gene expression. Readers include YTH (YT512-B
homology) domain family [39], eukaryotic initiation factor 3
(EIF3) [5], insulin-like growth factor 2 mRNA-binding proteins
(IGF2BPs) [40] and heterogeneous nuclear ribonucleoprotein
(HNRNPA2B1 and HNRNPC) [41]. These reader proteins recognize
and bind specifically to m6A-modified RNAs, leading to the
implementation of biological functions and distinct destinies of
target RNAs [42]. Among them, YTH family members were found
to be highly conserved in different species, such as humans,
Drosophila, yeast and Arabidopsis [5], with a YTH consensus
domain for m6A recognition. Taken together, the reversible m6A
and its regulators were widely found and conserved among
various species, indicating the broad biological roles of this
dynamic process on RNAs.

Due to the advances of high-throughput sequencing
approaches developed for transcriptome-wide mapping of the
m6A RNA modification, tens of thousands of m6A sites can
be identified simultaneously with a single high-throughput
experiment [43–48]. The antibody-based sequencing approach
MeRIP-Seq (or m6A-Seq) provides m6A-containing regions with
a resolution of around 100-nt [43, 44]. Since its invention in
2012, it has been widely applied and successfully identified m6A
methylation in more than 30 organisms among various species.
Besides MeRIP-Seq (or m6A-Seq), the precise location of m6A
modification can be profiled transcriptome-wise with a variety
of advanced sequencing approaches of single base-resolution,
including antibody-based methods (m6A-CLIP [48], miCLIP [45],
PA-m6A-Seq [47], m6ACE-seq [49]), enzyme-based methods
(m6A-REF-seq [50]), fusion domain-based method (MAZTER-seq
[51], DART-seq [52]) and substrate alternation-based method
(m6A-Label-seq [53]). These experimental approaches, together,
offered valuable information concerning the position of m6A
RNA modification in different species and under various
biological contexts.

Databases of m6A RNA methylation sites have been devel-
oped to allow users to query and analyze this information [54–
59]. Among them, MetDB [59] and RMBase [58] each collected
around 400 000 unique m6A sites in human. However, although
m6A has been unambiguously demonstrated to be functionally
important, it is unlikely that all (or most) m6A sites are func-
tionally important, raising the question of how to distinguish the
functional m6A sites from the remaining ‘passenger’ (or ‘silent’)
sites caused by off-target effects of m6A methyltransferases. This
is especially important as today’s high-throughput sequencing
techniques typically identify huge numbers of m6A sites.

We seek to address this challenge from the perspective
of evolution. It is known that positive (or purifying) selection
reflects how evolutionary forces shape biological process or
features, and hence functionally important elements that
increase organismal fitness are more likely to be conserved
during evolution [60]. The idea of inferring functionality from
evolutionary evidence has been used quite extensively in
functional genomics for prioritizing various biological elements,
such as phosphorylation or structure prediction [61–65]. The
degree of conservation may be considered as a priori indicator
of functionality; however, how and to what degree can we
analyze the cross-species conservation of an arbitrary m6A
RNA methylation site, and use it as an evaluation metric for
functional discrimination remains elusive. Previous studies of
the m6A epitranscriptome have reported the overall conserved
landscape between human and mouse [43, 44], the evolution of
m6A modification among primates [66] and the important link
of m6A between genetic and phenotypic variation [67]. A recent
study focused on the dynamic m6A methylation profiles across
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various human tissues, and reported that m6A modification
on different genic locations may subject to different selection
pressure [68]. Besides, Liu et al. [69] found that a significant
proportion of m6A sites, especially those located on protein
coding regions, are not evolutionarily conserved and are likely
nonfunctional. Meanwhile, they analyzed m6A sites detected
in S. cerevisiae and S. mikatae and showed that the number of
m6A sites shared by the two species was significantly greater
than expected by chance, indicating a small proportion of yeast
m6A modifications are conserved and likely functional. However,
the similar analysis between human and mouse m6A sites
was unavailable due to lack of m6A sequencing data profiled
at base-resolution level. These studies have focused on the
overall conservation of the epitranscriptome without paying
attention to the conservation of individual m6A sites. Very
recently, the m6A-Atlas database [70] provided a binary label
(conserved or not conserved) for the conservation of individual
m6A sites based on existing epitranscriptome data, but it didn’t
quantitatively assess the degree of conservation of m6A sites,
and more importantly, neither can it computationally predict
the potential conservation (not observable from existing data) of
individual m6A sites (see Supplementary Table S1 for a detailed
comparison). Since the coverage of the epitranscriptome from
existing data is quite limited, the conserved m6A sites reported
from m6A-Atlas [70] are likely to be incomplete. Computational
approaches that can predict the conserved m6A sites not
yet confirmed from existing data would be highly desired at
current stage of epitranscriptome studies when high-quality
epitranscriptome data are not abundantly available in species
other than human.

We present here ConsRM, a resource for conservation anal-
ysis of m6A RNA methylation sites. It has three key features: a
novel scoring framework for quantitatively measuring the con-
servation of individual m6A sites, an online database collecting
177 998 human m6A RNA methylation sites along with their
conservation scores and a web server that helps evaluate the
conservation of any newly detected user-provided list of human
m6A sites. To explore whether the conserved m6A sites reported
by ConsRM differ from less-conserved positions in terms of
functionality, a series of comparisons was performed, including
germline versus somatic mutations, mutations, deleterious lev-
els, disease-associated analysis and RNA-binding protein inter-
actions, etc. Results showed that the m6A sites scored higher in
our system were clearly more likely to be conserved in different
species, and are more strongly associated with various biological
functions, suggesting the effectiveness of our approach in distin-
guishing functional m6A sites from silent modifications from the
perspective of conservation.

Materials and methods
Evaluate the conservation of individual m6A site
with ConsRM score

To systematically evaluate the degree of conservation of indi-
vidual m6A site, we developed a detailed scoring mechanism,
the ConsRM score, by integrating information from six different
sources, including positional mapping, tissue-specific mapping,
support from multiple studies, sequence similarity, machine
learning modeling and genome conservation.

Positional mapping

Positional mapping concerns whether the RNAs transcribed
from conserved loci of human and mouse are equally m6A

modifiable at corresponding positions. To evaluate positional
mapping, we collected a total of 177 998 and 110 959 m6A
sites in human and mouse transcriptome, respectively, from 46
datasets generated from six different m6A profiling techniques
(Supplementary Sheet S1). It is worth mentioning that we
considered only techniques with base-resolution in our analysis
to reduce false positive m6A sites. Although MetDB [59] and
RMBase [58] both hold a larger collection of human m6A sites,
our previous study reported that there existed a substantial
proportion of false positive records, which were induced from
their motif-based m6A-seq (MeRIP-seq) data analysis pipeline
[71]. For each human m6A site (based on hg19 genome assembly),
its corresponding coordinate in mouse transcriptome (based
on mm10 genome assembly) was identified using the UCSC
LiftOver tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver). The
conservation scores of human m6A sites were assigned for 1
mark if their corresponding coordinates in mouse transcriptome
were also m6A modifiable. Besides precise positional mapping,
we also checked the nearby regions for possible imprecise
mapping [61], and assigned 0.8, 0.6, 0.4 and 0.2 mark for human
m6A sites if an m6A modification were detected at 1 bp, 2 bp, 3 bp
and 4 bp distance from their corresponding mouse coordinates.
Imprecise mapping assumes that the m6A sites located very
close to each other may have similar and mutually replaceable
functions but subject to some penalty.

Tissue-specific mapping

Tissue-specific mapping concerns whether the RNAs tran-
scribed from the conserved locus of human and mouse are
simultaneously m6A modified at the same tissue. Currently,
m6A sites were successfully identified under 12 tissues from
human transcriptome, and for mouse, this number slightly
dropped to nine (Supplementary Sheet S1). Among them, four
tissues were shared by both species, including brain, liver, kidney
and embryonic stem cell (ESC). In tissue-specific mapping, 1
additional mark was assigned for the m6A sites observed in the
same tissue of human and mouse.

Supports from multiple studies

Supports from multiple studies concern whether an m6A site
can be detected by multiple m6A profiling studies. It was shown
previously that RNA modification sites captured by different
high-throughput sequencing techniques may exhibit different
overall patterns and capture different technical bias [72–75], indi-
cating that different techniques may have their own technical
preference. We suspected the m6A sites detected under multiple
studies are more reliable with less possibility of being a false
positive signal. For this reason, we assigned 1, 0.8, 0.6, 0.4 or 0.2
mark for m6A sites that can be detected by more than 6, 5–6, 3–4,
2 or 1 m6A profiling datasets.

Sequence similarity

Sequence similarity of m6A surrounding bases was also con-
sidered. Specifically, sequences were extracted from the 11 bp
flanking windows centered on a human m6A and its corre-
sponding base in the mouse transcriptome, respectively. Follow-
ing a previous example [61], we considered here a customized
motif-specific scoring matrix (MSSM) that assigns scores to each
position of the paired sequences, with the m6A-forming motif
DRACH being assigned with higher weight. Marks were assigned
to identical base or transition (changing of a purine nucleotide
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Table 1. Motif-specific scoring matrix (MSSM)

Positions −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5

m6A motif D R A C H
Score (max: 32) No change (I) 2 2 2 4 4 4 4 4 2 2 2

Transition (S) 1 1 1 3 3 3 3 3 1 1 1
Transversion (V) 0 0 0 0 0 0 0 0 0 0 0

Example
(total: 28)

Human seq T G T A A A C A G A G
Mouse seq G G C A G A G A G G G
Comparison V I S I S I V I I S I
Score 0 2 1 4 3 4 0 4 2 1 2

Note: The score obtained from sequence similarity of the two sequences is: 23/32 = 0.71875.

to another purine, or a pyrimidine nucleotide to another pyrim-
idine, A↔G or C↔T), but not for transversion (changes between
purine and pyrimidine). For example, a human m6A site was
detected at position 77 776 162 of positive strand on chromo-
some 15 by m6A-REF-Seq [76], the sequences within the 11 bp
flanking windows of this m6A site and its corresponding locus in
mouse transcriptome are TGTAAACAGAG and GGCAGAGAGGG,
respectively, with A stands for the centered m6A in human or
its corresponding residual in mouse sequence. The cumulative
score of this paired sequence is 15 (4 + 3 + 4 + 0 + 4) within the
motif region, and 8 (0 + 2 + 1 + 2 + 1 + 2) for the rest of the regions.
The score from sequence similar was then 0.71875, which was
calculated from (15 + 8)/32 (see Table 1). Besides, 0 mark was
assigned for a paired sequence if another base (not A) was
observed on the corresponding position in mouse transcriptome.

A machine learning model

A machine learning model was applied for inferring the
conserved m6A sites. The conservation of all m6A sites was
evaluated by a newly proposed predictor, which extracted
various domain knowledge derived from genomic features
[77, 78] (Supplementary Tables S2 and S3) as well as con-
ventional sequence features, i.e. chemical properties [79, 80]
and nucleotide density [81–83] (Supplementary Table S4). For
training purpose, we retained sites that are m6A-modifiable
in both human and mouse transcriptome as the positive
dataset P. It is worth noting that, although existing studies have
accumulated a large amount of epitranscriptome data, the issue
of false negative still remains, i.e. due to the incompleteness
of the data, the sites not observed to be conservable according
to existing data may still be conserved. Therefore, the rest of
samples (after excluding positive set P) should be considered as
the unlabeled dataset U (rather than the negative set). And the
positive-unlabeled learning (PU learning) strategy was applied to
find the most reliable negative samples. Specifically, following
a previous study [84], the PU learning process was divided into
the following two steps. First, we randomly selected the same
number of positive samples as the positive dataset P from the
unlabeled dataset U, and assigned this subset as the negative
dataset N with 1:1 positive–negative ratio. The datasets P and
N were then used to train an SVM-based predictor, and the
category probabilities of the unlabeled dataset U were predicted.
The top 1% of the unlabeled U with the highest probability are
likely to be unidentified positive samples, and are excluded from
dataset U. This process was repeated 10 times, from which the
most reliable negative dataset RN was retained. Next, the dataset
RN and P were used to train the final prediction model.

Support Vector Machine (SVM) has been shown to be a quite
effective machine learning algorithm in the field of computation

biology and achieved good performance previously in various
site prediction studies [83, 85, 86]. The R language interface of
LIBSVM [87] was used in our study to develop the final prediction
model, and the radial basis function was set as kernel following
the default setting for other parameters.

For performance evaluation, we randomly selected 80% of
dataset P as positive training data, while the rest of 20% was used
for independent testing. Initially, for each positive site, 10 nega-
tive data were selected from RN. Later, 10 independent predictors
were constructed with a balanced 1:1 positive–negative ratio, and
their prediction results were averaged. Consequently, two pre-
diction frameworks were developed to evaluate the conservation
degree of m6A sites in human and their corresponding positions
of mouse transcriptome, respectively. A 5-fold cross-validation
was also performed on training dataset. The prediction accuracy
was represented by the receiver operating characteristic curve
(ROC curve) (sensitivity against 1-specificity), and the area under
ROC curve (AUROC) was calculated as the main performance
evaluation metric for its nonparametric characteristics. More-
over, the sensitivity (Sn), specificity (Sp), accuracy (ACC) and
Matthews correlation coefficient (MCC) were also presented for
performance evaluation, specifically:

Sn = TP
TP + FN

(1)

Sp = TN
TN + FP

(2)

MCC = TP × TN − FP × FN√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(3)

ACC = TP + TN
TP + TN + FP + FN

(4)

where TP represents the true positives, while TN represents the
true negatives; FP is the number of false positives and FN the
number of false negatives.

Genome conservation

The phastCons 100-way conservation scores were calculated for
human genome derived from genome-wide multiple alignments
with 99 other vertebrate species. It was integrated into our
scoring framework to evaluate the conservation degree of each
human m6A site from a more general perspective. The scores
were generated by R package phastCons100way. UCSC.hg19 [88],
with the mark ranging from 0 to 1.

Taken together, the ConsRM score was calculated for each
experimentally validated human m6A site by taking the average
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Figure 1. Construction of the ConsRM Score. The ConsRM score was designed to quantitatively measure the degree of conservation of individual m6A RNA methylation

sites. It integrates information from six different sources, including the positional mapping, tissue-specific mapping of m6A-epitranscriptomes between human and

mouse, the sequence similar, genome conservation, the support of multiple m6A studies and a machine learning model.

of the scores derived from the six aspects mentioned above, and
ranges from 0 to 1. The ConsRM score can effectively quantify the
evolutionary conservation of individual m6A sites and provide
insights into their functional potentials. The overall design of the
conservation scoring framework is summarized in Figure 1.

Functional differentiation of the conserved and unconserved
m6A sites

In order to test if the m6A sites with a higher ConsRM score
are more likely to be functional, a series of experiments
were performed involving various biological data. Specifically,
37 094 832 germline mutations and 2684 788 somatic mutations
were obtained from dbSNP [89] and the TCGA database (TCGA
v15.0) [90], respectively. Only the single-nucleotide variations
localized on exonic regions were retained for subsequent
analysis (Supplementary Sheet S2). The deleterious level of
each genetic mutation was predicted by SIFT [91], PolyPhen2
HVAR [92], PolyPhen2HDIV [92], LRT [93] and FATHMM [94] using
the ANNOVAR package [95]. The disease-associated tagSNPs
were derived from GWAS catalog [96], Johnson and O’Donnell
[97] and the ClinVar database [98], and were used to decipher
the potential relationship between disease pathogenesis and
m6A conservation level. Besides, since m6A modification was
found to recruit RNA-binding proteins that are closely associated
with posttranscriptional regulations [23], we then checked
whether the conserved m6A sites are more likely to localize
within the RBP binding sites collected from STARBASE2 [99],
especially for the m6A reader proteins YTHDF1, YTHDF2,
YTHDF3, YTHDC1 and YTHDC2 (Supplementary Table S5).
Lastly, the experimentally validated m6A sites identified in rat
(genome assembly: rn6) and zebrafish (danRer10) were collected
(Supplementary Sheet S1), and used to test whether the human
m6A sites with higher ConsRM score were more likely to be
conserved (as m6A) in a third species.

Construction of ConsRM website

The website interface of ConsRM online platform was con-
structed using Hyper Text Markup Language (HTML), Cascading

Style Sheets (CSS) and Hypertext Preprocessor (PHP), with MySQL
tables exploited for the storage of the metadata. The multiple
statistical diagrams were presented by EChars, and Jbrowse
genome browser [100] was employed for interactive exploration
and visualization of relevant genome coordinate-based records.

Results
Justifying elements of ConsRM score

A significant number of m6A sites are conserved between
human and mouse

We first tried to identify the conserved m6A sites between
human and mouse. By comparing the conserved loci of human
and mouse, we found that, among the total of 177 998 human
m6A RNA methylation sites, 22 359 (12.56%) are shared in the
mouse transcriptome, i.e. the corresponding bases in the mouse
transcriptome are also m6A-modifiable according to the data
collected (Supplementary Sheet S1). These conserved m6A sites
between human and mouse transcriptome were referred as
m6A++ sites in the following text for simplicity.

Of interest is whether the proportion of m6A++ sites (m6A
sites observed to be conserved) is statistically significant. For this
purpose, we randomly generated 177 998 pseudo m6A sites from
the As within the DRACH consensus motifs of the same m6A-
carrying transcripts in human, identified their corresponding
genome coordinates in the mouse transcriptome, and compared
them with the mouse m6A sites. The process was repeated 1000
times. The testing results showed that only a very small number
of pseudo human m6A sites were observed to conserved in
mouse (Figure 2A). The result showed the number of modifiable
m6A sites shared between human and mouse transcriptome
(22 359) is significantly greater than expected by chance (497),
suggesting that a majority of the m6A++ sites are results of puri-
fying selection, and thus likely to be functional. It is worth noting
that, after excluding the 22 359 m6A++ sites, the remaining
155 639 human m6A sites are considered unlabeled sites (rather
than unconserved sites), we and refer them as m6A+− sites in
the next for simplicity. Some of them may still be conserved but
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Figure 2. Comparison between characteristics of m6A++ and m6A+− sites. A. The number of m6A sites shared between human and mouse transcriptome (22 359) is

significantly greater than expected by chance (497), suggesting that a majority of the m6A++ sites are results of purifying selection, and thus likely to be functional.

B. m6A++ sites have a much higher proportion to be captured by multiple datasets, with high-record level (1232 m6A++ sites, 5.51%, P < 0.001, Chi-squared test) and

medium-record level (10 335 m6A++ sites, 46.22%, P < 0.001, Chi-squared test), compared with m6A+− sites (high-record level: 1736 m6A+− sites, 1.12%; medium-record

level: 30,385 m6A+− sites, 19.52%).

not positively reported from our analysis due to limited coverage
of the mouse epitranscriptome.

The conserved m6A sites are more likely to be captured
by multiple studies

A number of m6A profiling techniques have been developed, and
it was shown previously that the detection of RNA modification
sites is sensitive to the specific profiling technique used [72–
75]. It may be reasonable to speculate that the conserved m6A
sites (m6A++ sites) can be more robustly detected by multiple
m6A profiling studies due to their prominence presence. To test
this hypothesis, we systematically evaluated the record time
(the number of studies supporting a specific m6A site) between
22 359 m6A++ sites and the rest of 155 639 unlabeled m6A
sites (m6A+− sites). Interestingly, we observed that m6A++ sites
have a much higher proportion in both high-record level (1232
m6A++ sites, 5.51%; P < 0.001, Chi-squared test) and medium-
record level (10 335 m6A++ sites, 46.22%; P < 0.001, Chi-squared
test), compared with m6A+− sites (high-record level: 1736 m6A+−
sites, 1.12%; medium-record level: 30 385 m6A+− sites, 19.52%;
Figure 2B), suggesting that record time can be used to distinguish
more conserved m6A sites among all detected m6A sites, and it
was thus integrated into our scoring metrics.

Performance evaluation of the machine learning component

Two machine learning models were developed to predict the
degree of conservation of individual m6A sites in human and
mouse transcriptome, respectively, using the positive dataset
m6A++ sites and reliable negative dataset under the positive-
unlabeled learning framework. They integrate both genomic
features and the conventional sequence-derived features for
enhanced predictive capability (Please refer to the detailed
description in the section MATERIALS AND METHODS).

The performance of the newly constructed machine learning
predictors was evaluated by a 5-fold cross validation and an
independent testing dataset. As shown in Table 2, our predictors
achieved reasonable prediction performance with AUROC of

0.840 and 0.829 in the prediction of the conserved m6A sites for
human and mouse, respectively, without relying on additional
epitranscriptome profiling data. The predictive performance of
our models is higher in human (0.840) than in mouse (0.829),
which might be because of more complete data collection and
predictive feature construction for human machine learning
model. The prediction results were then integrated with other
evidence to construct a more reliable indicator for the conserva-
tion of RNA methylation site.

Feature ranking was performed to identify the most
effective genomic features used for labeling the conserved
m6A sites in human and mouse transcriptome, respectively
(Supplementary Figure S1). The top two most critical features
for both human and mouse models are PC_101bp (average
phastCons scores within the flanking 101 bp) and PC_1bp
(phastCons scores of the nucleotide), suggesting that epitran-
scriptome conservation partially contributed to the conservation
of genome. Besides, among the top 10 most important features,
three other features were shared by both human and mouse
models, including clust_A_f100 (count of neighboring A within
201 nt window), clust_A_f1000 (count of neighboring A within
2001 nt window) and long_exon (exon length > = 400 bp),
indicating the importance of clustering effects and long exons
in identifying the conserved m6A sites.

In addition, sequence similarity, tissue-specific mapping and
phastCons 100-way conservation scores calculated for human
genome were previous applied for conservation-related studies
[61, 88, 101]. These elements were also used to extract conser-
vation information of m6A RNA modification sites and incorpo-
rated into ConsRM score.

Assessing the conservation of individual RNA methylation
sites with ConsRM score

The ConsRM score was devised to quantify the degree of conser-
vation of individual m6A RNA methylation sites by integrating
the scores inferred from six different sources, including posi-
tional mapping, tissue-specific mapping, supports from multiple
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Table 2. Performance evaluation of proposed machine learning approaches

Species Testing method Evaluation metrics

Sn Sp ACC MCC AUROC

Human Cross-validation 0.769 0.747 0.758 0.516 0.840
Independent testing 0.772 0.747 0.759 0.519 0.840

Mouse Cross-validation 0.732 0.757 0.745 0.489 0.832
Independent testing 0.726 0.759 0.742 0.485 0.829

Note: 80% of m6A++ sites were used for training, while its performance was tested on the rest of 20% m6A++ sites as independent testing dataset. We assigned 10
m6A+− sites, obtained from reliable negative (RN) dataset, for each m6A++ sites as the negative data. A total of 10 independent predictors were constructed with
balanced 1:1 positive–negative ratio with their performance averaged to fully take advantage of the unbalanced positive and negative data.

techniques, sequence similarity, machine learning modeling and
genome conservation (see Figure 3). As these scores should all
contribute positively to the conservation of m6A sites, and they
are positively correlated with each other. The most correlated
pair of sources are positional mapping (∗b) and machine learning
modeling (∗f) with Pearson’s correlation of 0.75.

It is worth noting that the conservation of m6A modification
is different from the conservation of the genome. The conser-
vation of an m6A site strictly requires the conservation of the
relevant genomic locus, but the opposite is not true. A brief com-
parison of the genomic conservation (phastCons score) and the
epitranscriptome conservation (ConsRM score) can be found in
Figure 3 (∗a versus ∗g), with Pearson’s correlation of 0.67. In fact,
the score from machine learning model is most correlated (Pear-
son’s correlation of 0.93) to the ConsRM score, with sequence
similarity being ranked at the second place (Pearson’s correlation
of 0.75). It is important to note that, although machine learning
model alone could report scores highly correlated to ConsRM, it
should not be used to replace ConsRM score, because ConsRM
integrates significant amount of information at single site level,
e.g. direct validation of conservation from positional mapping
(∗b) and tissue-specific mapping (∗c) reported by existing epi-
transcriptome datasets.

The newly proposed ConsRM scoring framework was applied
to all the 177 998 m6A RNA methylation sites in human, based
on which, these sites were further stratified into three groups
according to their conservation level, i.e. the top 30% (53 399)
sites of high conservation, 30–60% (53 399) sites of medium level
of conservation, and last 40% (71 200) sites of low conserva-
tion. In order to examine the potential functionality associated
with conservation (or test the reliability of the proposed scoring
mechanism in identifying functional m6A sites), several experi-
ments were performed in the following. We showed that ConsRM
score can effectively predict the conserved m6A sites not yet
revealed by existing studies by comparing to the epitranscrip-
tome datasets in mouse, rat and zebrafish, and the m6A sites
with higher ConsRM scores are more likely to be functionally
important, i.e. less likely to be affected by germline mutations
and more likely to fall within the binding regions of various
RNA-binding proteins, especially m6A readers.

ConsRM score can effectively evaluate conservation
degree of individual m6A sites, with implications
of its functionality

ConsRM predicts more conserved m6A sites not yet supported
by existing studies, compared with genomic conservation
scores phastCons and phyloP

It is worth noting that although a large number of m6A sites have
been identified in human and mouse, it is reasonable to believe

that the unveiled m6A epitranscriptome is still incomplete. Thus,
it is likely that many genuine m6A sites remain to be uncovered:
in other words, a significant proportion of the current m6A+−
sites may turn out to be conserved (actually m6A++ sites) as
more data are accumulated. It is therefore interesting to test
whether the newly developed ConsRM score has the potential
to predict the conserved m6A sites not supported by existing
datasets.

For this purpose, all mouse m6A datasets identified by m6A-
CLIP-seq (mouse experiments 9–14, Supplementary Sheet S1)
were completely excluded when calculating the ConsRM score
of human m6A sites, and using as independent testing purpose.
We focused on only the m6A+− sites in this testing experiment,
assuming that m6A+− sites with higher ConsRM score are more
m6A conserved and thus more likely to be identified in the
independent testing datasets. Similarly, the human m6A+− sites
were classified into three groups according to their ConsRM
score (top 30%, 30–60% and last 40%), and the RNA methylation
status of their corresponding coordinates in mouse transcrip-
tome was examined by comparing with the omitted six new
mouse datasets.

Interestingly, we observed that 8180 (19.60% of the conserved
As) m6A+− sites from high conservation level can now be
mapped to experimentally observed m6A sites in the new
mouse m6A-CLIP-seq datasets, compared with 2377 (5.07% of
the conserved As) from the medium conservation level and 247
(1.31% of the conserved As) m6A+− sites from low conservation
level, respectively (Table 3). For performance comparison, we
performed this analysis using phastCons100way.UCSC.hg19
[88] and phyloP100way.UCSC.hg19 [102], respectively, which
are well-known genomic conservation scores that presenting a
high coverage, near base-resolution of nucleotide conservation.
Similarly, the human m6A+− sites were also classified into three
groups by phastCons and phyloP, respectively. Although it is
clear that, although phastCons and phyloP can also convey some
information related to epitranscriptome layer conservation,
ConsRM is significantly more effective (phastCons: 6275, 14.93%
of conserved m6As, P < 0.001, Chi-squared test; phyloP: 5468,
11.96% of conserved m6As, P < 0.001, Chi-squared test, compared
with ConsRM: 8180, 19.60%). Meanwhile, at medium and
low levels, phastCons and phyloP made more false positive
predictions (m6A with a low conservation score later confirmed
to be conserved by new experiments). Taken together, these
results suggest that the proposed ConsRM framework is more
effectively in distinguishing the conserved and unconserved
m6A sites by directly learning from the partially available m6A
epitranscriptomes. Please note that we have excluded the
impact of genome conservation in the analysis by considering
only the conserved As in the above analysis. Because the
unconserved loci were not considered in this analysis, the
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Figure 3. ConsRM score for quantifying the degree of conservation of individual m6A sites. ConsRM score (∗a) integrates the information from six different sources,

including positional mapping (∗b), tissue-specific mapping (∗c), supports from multiple studies (∗d), sequence similarity (∗e), machine learning modeling (∗f) and

genome conservation (∗g). We showed the overall distribution pattern of individual source with histogram at the diagonals. The scatter plots and the Pearson’s

Correlations of two arbitrary sources were shown in the corresponding position of the lower left and upper right triangle, respectively.

impact of cross-species genome conservation was eliminated.
Please see Figure 4 for detailed schematic representation of this
experiment.

m6A sites with higher ConsRM scores are more likely to be m6A
sites in a third species

We further examined whether the highly scored m6A sites are
more likely to be conserved in a third species, with the hypoth-
esis that evolutionarily conserved m6A modifications have a
greater probability to be functional. A total of 6348 rat and 63 998
zebrafish m6A sites were collected for this purpose (Supplemen-
tary Sheet S1). We also collected the sites that are conserved as
A but not known to be methylated as the negative control.

Consistent with previous testing results, the m6A sites with
higher ConsRM scores are more likely to be A and m6A in a third
species (see Table 4). Specifically, 51 403 (97.17%) human m6A

sites from high conservation level are As in rat, and 746 (1.39%)
are also experimentally validated m6A sites, compared with m6A
sites from medium conservation level (83.59% and 0.55% are or
m6A sites, respectively) and m6A sites of low conservation level
(31.25% are As, 0.11% are m6A sites). A very similar pattern was
observed in zebrafish with 45.91%, 35.36% and 6.26% of human
m6A sites are A for the sites of high, medium and low conserva-
tion level, respectively, and 3.80%, 1.25%, 0.18 are m6A sites.

Again, to exclude the impact of genome conservation, we
used the human m6A sites that are As (rather than m6A) in
the third species as a negative control, and calculated the ratio
between the conserved m6A sites and other As. As shown in
Table 4, this ratio still increases clearly with the conservation
score from 0.35% (for the low conservation set) to 1.45% (for
high conservation set), and a similar pattern can be observed in
zebrafish from 2.83% (for lowly conserved m6A sites) to 8.27%
(for highly conserved m6A sites), suggesting the ConsRM score

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab088/6276017 by N

ational Science & Technology Library user on 12 O
ctober 2022



ConsRM 9

Table 3. ConsRM predicts the conserved m6A sites not supported by existing datasets

Conservation
level

Site # Method # of m6A+− sites # of A found in
independent mouse
dataset (%)

# of newly confirmed
m6A ++ sites in
independent mouse
dataset (%)

Ratio of newly
confirmed m6A
and A

High 53 399 ConsRM 41 772 41 743 (99.93%) 8108 (19.58%) 19.60%
PhastCons 46 479 42 028 (90.42%) 6275 (13.50%) 14.93%
phyloP 47 455 45 716 (96.34%) 5468 (11.52%) 11.96%

Medium 53 399 ConsRM 53 399 46 925 (87.88%) 2377 (4.45%) 5.07%
PhastCons 50 357 35 611 (70.72%) 2796 (5.55%) 7.85%
phyloP 49 595 33 116 (66.77%) 3351 (6.76%) 10.12%

Low 71 200 ConsRM 71 200 18 828 (26.44%) 247 (0.35%) 1.31%
PhastCons 69 535 29 857 (42.94%) 1661 (2.39%) 5.56%
phyloP 69 321 28 664 (41.35%) 1913 (2.76%) 6.67%

Figure 4. Schematic representation of the mouse experiment. These exist four different types of m6A sites according to their conservation status. All mouse m6A

datasets generated by m6A-CLIP-seq were used as independent testing data, and were excluded when calculating the ConsRM score for human m6A sites. We then

find the corresponding coordinates of human m6A+− sites in mouse transcriptome, and compare them with the independent mouse dataset to assess the capability

of different scoring frameworks in predicting the previously unknown conserved m6A sites. To elimiate the confounding factor of genome conservation, we considered

primarily the ratio between type 1 m6A++ sites and the type 2 m6A+− sites when reporting the results (last column in Table 3).

Table 4. Conservation of human m6A sites with different ConsRM score in rat and zebrafish

ConsRM
Score

# Rat Zebrafish

A m6A Ratio P-value A m6A Ratio P-value

High 53 399 51 403 (97.17%) 746 (1.39%) 1.45% High-Medium ∗∗∗ 24 517 (45.91%) 2028 (3.80%) 8.27% High-Medium ∗∗∗
Medium 53 399 44 606 (83.59%) 292 (0.55%) 0.66% Medium-Low ∗∗∗ 18 884 (35.36%) 669 (1.25%) 3.54% Medium-Low ∗∗
Low 71 200 22 253 (31.25%) 79 (0.11%) 0.35% High-Low ∗∗∗ 4456 (6.26%) 126 (0.18%) 2.83% High-Low ∗∗∗

Note: ‘∗∗∗’ indicates a significance level of P < 0.01, while ‘∗∗’ indicates P < 0.05.

successfully captured the epitranscriptome conservation. Taken
together, these results confirmed the effectiveness of the newly
proposed ConsRM framework in assessing the degree of conser-
vation of individual RNA methylation sites in human and mouse,
and extrapolating that knowledge to other species.

It is worth mentioning that a higher proportion of human
m6A sites are observed to be conserved in zebrafish compared
with rat. This probably resulted from the incomplete and
imbalanced data collection (6348 rat m6A sites and 63 998
zebrafish m6A sites, see Supplemental Sheet S1). Currently,

epitranscriptome data generated from base-resolution tech-
nique are still highly scarce. It is reasonable to speculate
that the observed degree of conservation should still increase
substantially as more data are available.

SNP density analysis clearly differentiated m6A sites
of different ConsRM score

After showing that the proposed scoring system can effectively
distinguish the conserved and unconserved m6A sites, we next
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tested whether there exists a clear association between conser-
vation and biological function.

Previous work suggests that mutations in m6A consensus
motifs are suppressed in human cancer cells [103]. We first cal-
culated the SNP density for m6A sites of different conservation
levels by checking if the m6A modifications can be destroyed by
a genetic mutation occurring within the 5 bp flanking windows
centered with the m6A sites (or alter the m6A-forming motif
DRACH). Since the conserved m6A sites are likely to be functional
and thus subject to purifying selection, their SNP density was
predicted to vary from that of unconserved one. Two types
of genetic mutations were considered: germline and somatic.
Germline mutations occur in gametes and can be passed onto
offspring, while somatic mutations result from the damage to
genes in an individual cell during a person’s life and are thus
not inheritable. Notably, as shown in Table 5, the density of both
somatic and germline mutations differs in m6A sites of dif-
ferent conservation levels. Interestingly, distinct patterns were
observed between germline and somatic mutations. While the
density of germline mutation decreases slightly with increas-
ing conservation of m6A sites (with 3.14%, 2.93% and 2.57%
for the m6A sites with low, medium and high conservation
level, respectively), somatic mutation exhibited an increasing
trend (with 5.22%, 13.34% and 16.83% for the m6A sites with
low, medium and high conservation level, respectively). These
results suggest that the more conserved m6A sites were less
affected by germline mutations when compared with the less
conserved sites, and the cancer-caused somatic mutations are
more likely to occur around the conserved m6A sites and thus
destroy the relevant function. This suggests that these most
conserved m6A sites may play a more critical role in various
biological processes compared with other sites. Meanwhile, we
found that although only a very small number of germline muta-
tions were related to highly conserved m6A sites likely as the
result of purifying selection, a higher proportion of them were
predicted to have highly deleterious consequences, compared
with germline variants localized to the less conserved m6A
sites. Lastly, all germline and somatic mutations associated with
different conservation levels of m6A sites were mapped with the
disease-causing TagSNPs obtained from Johnson and O’Donnell,
GWAS catalog, and ClinVar database. We observed that germline
mutations associated with highly scored m6A sites overlapped
more frequently with disease-causing TagSNPs, indicating that
m6A sites with a higher ConsRM score have a larger propensity
to cause disease, presumably because they are more likely to
be intimately involved in functional regulatory events. Taken
together, we systemically evaluated the conservation degree of
a large amount of experimentally validated m6A modifications,
using our newly developed scoring system. The testing results
obtained from germline and somatic mutations suggested that
m6A sites with higher ConsRM score are generally more func-
tionally important, which in turn proved that the ConsRM score
is able to quantify the conservation of m6A sites, or identify
functional m6A RNA methylation sites.

Conserved m6A sites may mediate more RNA-binding
protein interactions

It was found previously that m6A RNA methylation may recruit
RNA-binding proteins that are closely associated with posttran-
scriptional regulations [23]. We examined possible interactions
between RNA binding proteins and m6A sites of different con-
servation levels by checking whether they localized within the
regions of RBP binding sites (Table 6). Most m6A sites from the

highly conserved group are related to at least one RNA binding
protein (46 668 m6A sites, 87.48%). This proportion dropped to
63.67% for m6A sites with lowest conservation level. Moreover,
the same tendency was also observed for five different types
of m6A reader. For example, 12 089 (22.66%) m6A sites from the
high conservation group were localized in the binding regions
of YTHDF1, while only 5839 (8.21%) from the low conservation
group were associated with this m6A reader. Thus, this finding
supports the reliability of the proposed scoring mechanism for
finding biological meaningful m6A sites.

Case study

Glioblastoma (GBM) is as the most devastating primary
malignant brain tumor in human, as recurrence is nearly
inevitable even after modern surgery and highly aggressive
therapies [104]. Many studies have shown that FOXM1 is
overexpressed and plays a key role in GBM proliferation and
regulation [105–108]. In a more recent study, Zhang et al. [109] and
colleagues uncovered and provided insight into the important
roles of m6A modification in GBM. Specifically, ALKBH5, an m6A
eraser, is elevated in GBM and hence facilitates the expression
of oncogene FOXM1 through its demethylation activity. We
therefore examined the distribution and conservation degree
of m6A methylation on gene FOXM1 using our ConsRM score. In
total, we found 33 experimental validated m6A sites identified
by five high-throughput sequencing techniques using non-
tumor cell lines (Figure 5). Among them, 17 m6A sites (51.52%)
are classified into high conservation level (with maximal
ConsRM score: 0.7667, top 1%). We then extracted all the human
genes of a similar size (± 5% size of gene FOXM1) using R
package TxDb.Hsapiens.UCSC.hg19.knownGene. As shown in
Supplementary Sheet S3, among the 490 genes of similar size as
FOXM1, we observed an average of 6.722 m6A sites with 15.82% of
them being classified as highly conserved, compared to FOXM1
with 33 m6A sites (P = 0.00816) and 51.52% (P = 0.08367) are of high
conservation level (Figure 5). Consistent with previous studies,
our finding suggested that the human oncogene FOXM1 is highly
associated with m6A modification.

Functional characterization of the most conserved
m6A sites

We further extracted the top 1000 most conserved m6A sites
(with the largest ConsRM score), and examined their putative
functional relevance with Gene Ontology Enrichment Analysis of
their hosting genes. We showed in Figure 6A the top 20 biological
processes enriched with the most conserved m6A sites, many of
which have been confirmed to be closely associated with m6A
RNA methylation in recent studies, including but not limited to:
chromatin remodeling [110, 111] (covalent chromatin modifica-
tion, P-value = 3.69E-05; chromatin remodeling, P-value = 9.87E-
05),splicing [39] (mRNA splicing via spliceosome, P-value = 1.37E-
04, RNA splicing, P-value = 4.09E-04), DNA damage [13] (cellular
response to DNA damage stimulus, P-value = 9.47E-04), synapse
[112] (postsynaptic density protein 95 clustering, P-value = 1.56E-
03, layer formation in cerebral cortex, P-value = 1.97E-03, protein
localization to synapse, P-value = 1.97E-03). The complete results
are available in Supplementary Excel Sheet S4. Meanwhile, we
also plotted the overall distribution of the most conserved m6A
sites on mRNAs. Consistent with our knowledge of this modifi-
cation, these sites were also enriched near the stop codons of the
mRNAs (Figure 6B).
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Table 5. SNP density analysis for m6A sites with different degrees of conservation

Mutation
type

Conservation
level

Number of
m6A sites

SNPs within +− 2 bp
(motif)

SNPs with deleterious
level > 3

Disease- associated SNPs

Germline
mutation

High 53 399 1374
(2.57%)

High-
Medium∗∗∗

45 (3.28%) High-
Medium∗∗

115 (8.37%) High-
Medium-

Medium 53 399 1567
(2.93%)

Medium-
Low∗∗

32 (2.04%) Medium-
Low∗∗∗

125 (7.98%) Medium-
Low∗∗

Low 71 200 2238
(3.14%)

High-
Low∗∗∗

7 (0.31%) High-
Low∗∗∗

133 (5.94%) High-
Low∗∗∗

Somatic
mutation

High 53 399 8986
(16.83%)

High-
Medium∗∗∗

1656
(18.43%)

High-
Medium∗∗∗

42 (0.47%) High-
Medium-

Medium 53 399 7126
(13.34%)

Medium-
Low∗∗∗

1040
(14.59%)

Medium-
Low∗∗∗

22 (0.31%) Medium-
Low-

Low 71 200 3718
(5.22%)

High-
Low∗∗∗

164 (4.41%) High-
Low∗∗∗

11 (0.29%) High-Low-

Note: The effectiveness of ConsRM in distinguishing disease-associated somatic mutation is not significant maybe partially due to very limited number of such
mutations. ‘∗∗∗’ indicates a significance level of P < 0.01, ‘∗∗’ indicates P < 0.05, while ‘-’ indicates P > 0.1. High-Medium represents a significance level between high
and medium group, Medium-Low for medium and low group, and High-Low for high and low group.

Table 6. Number of RBP-related m6A sites

Conservation
Level

RNA-binding proteins

All RBPs YTHDF1 YTHDF2 YTHDF3 YTHDC1 YTHDC2

High 46 668 (87.48%)
H-M∗∗∗

12 089 (22.66%)
H-M∗∗∗

13 939 (26.19%)
H-M∗∗∗

2499 (4.68%)
H-M∗∗∗

6393 (11.98%)
H-M∗∗∗

427 (0.80%)
H-M∗∗∗

Medium 41 169 (77.17%)
M-L∗∗∗

5254 (9.85%)
M-L∗∗∗

7131 (13.37%)
M-L∗∗∗

1223 (2.29%) M-L- 3602 (6.75%)
M-L∗∗∗

313 (0.59%)
M-L∗∗∗

Low 45 288 (63.67%)
H-L∗∗∗

5839 (8.21%)
H-L∗∗∗

8608 (12.10%)
H-L∗∗∗

1546 (2.17%)
H-L∗∗∗

3153 (4.43%)
H-L∗∗∗

474 (0.67%)
H-L∗

Note: H-M represents a significance level between high and medium group, M-L for medium and low group and H-L for high and low group. ‘∗∗∗’ indicates a significance
level of P < 0.01, ‘∗∗’ indicates P < 0.05, ‘∗’ indicates P < 0.1, while ‘-’ indicates P > 0.1.

Figure 5. Comparison of m6A distribution and characteristics between human oncogene FOXM1 and other genes of similar size. A. For the 490 genes of similar size

as FOXM1 (± 5% size), an average of 6.722 m6A sites were observed, compared with human oncogene FOXM1 (33 sites, P = 0.00816). B. An average, 15.82% of m6A sites

were classified as highly conserved, this ratio increased to 51.52% (P = 0.08367) for FOXM1. More details can be found in Supplementary Sheet S3.

Integrating multiple epitranscriptomes
with MultiScore framework

The ConsRM framework previously defined considered only the
conservation between human and mouse epitranscriptome for
the following reasons: first, only limited epitranscriptome data
are currently available in other species. A fairly comprehensive
epitranscriptome data collection was performed in this study,

and we have collected 27 human samples and 19 mouse
samples; while only three rat samples and six zebrafish
samples were found (see Supplementary Excel Sheet S1). Limited
number of samples directly mean limited epitranscriptome
coverage, and may lead to increased biological and technical
bias in further analysis. Secondly, the ConsRM score based
on well-characterized epitranscriptomes of human and mouse
alone already produced reasonable results that are superior to
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Figure 6. Characterization of the most conserved m6A sites. A. Biological processes associated with the most conserved m6A sites. The complete enrichment analysis

results are available in Supplementary Excel Sheet S4. The GO analysis results were obtained by using DAVID web server [113]. B. Distribution of the most conserved

m6A sites on mRNAs. Consistent with our understandings of this modification, these most conserved m6A sites were also shown to be enriched near the stop codons

of the mRNA. There may be a second peak after the start codon, but it is not clear whether this is real pattern or simply noise. The metagene plot was generated using

MetaTX R package [114] under its default setting to measure the absolute density of m6A sites on standardized mRNA model in the presence of isoform transcripts

with the unit number of m6A sites per nucleotide of mRNA.

the well-adopted conservation metrics (phyloP and phastCons),
as was shown in our tests involving mouse, rat and zebrafish
datasets.

Nevertheless, a more general framework that can integrate all
available epitranscriptomes in different species is desirable. For
this purpose, a more general metrics termed ConsRM-MultiScore
was proposed by extending our original ConRM formulation.
It averages multiple pair-wise conservation scores calculated
between the epitranscriptome to be evaluated and all other
epitranscriptomes in different species to obtain a more general
overview via the integration of the all the available epitran-
scriptome datasets. The ConsRM-MultiScore is also provided in
ConsRM website, which was calculated from all four species
considered in this study, i.e. human, mouse, rat and zebrafish.
However, since the epitranscriptomes of rat and zebrafish are
likely of limited coverage due to small number of experimental
samples available, which may produce technical and biological

bias, the score was not used as the primary metrics in the
ConsRM database. However, as more and more epitranscriptome
datasets are produced in species other than human and mouse,
the MultiScore framework is likely to be more important in the
near future.

The ConsRM website

To effectively share our findings, the ConsRM website was devel-
oped to serve as a centralized online platform for deciphering
the evolutionary conservation of individual m6A RNA methyla-
tion sites (see Figure 7). It features a comprehensive collection of
177 998 experimentally validated human m6A RNA methylation
sites along with their ConsRM scores and various conservation-
related metrics, which directly reflect their evolutionary con-
servation and potential functionality (Figure 7A–C). Addition-
ally, a web server was constructed for calculating the ConsRM
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Figure 7. Contents of ConsRM online platform. A. Homepage of ConsRM website, user can query the conservation metrics of 177 998 experimentally validated human

m6A sites by gene or region. B. An example. Search for ‘PTEN’ returns 24 m6A sites located on the PTEN transcripts. Four of them are highly conserved, among the

top 5% most conserved m6A sites. C. The detailed conservation metrics and other regulatory information of the most conserved m6A site on PTEN, including detailed

experiment information and posttranscriptional regulations involved such as miRNA target, splicing site and RNA-binding protein interaction. D. A web server was

built to calculate the ConsRM score for any newly identified human m6A sites provided by user. A notification Email can be sent after the conservation assessment job

is completed.

scores for any newly detected human m6A RNA methylation
sites provide by users (Figure 7D), with the statistical signifi-
cance of the conservation score being assessed by comparing
to all the experimentally validated m6A sites collected in the
ConsRM database via the relative ranking, e.g. top 1% of all exper-
imentally validated m6A sites for extremely conserved sites or
80% for lowly conserved sites. The m6A RNA methylation sites
were also annotated to specify their interaction with posttran-
scriptional machinery (RBP-binding, microRNA interaction and
splicing sites), with the JBrowse Genome Browser properly set to
enable the direct exploration of the genomic regions of interests,
and detailed help documents were also provided. All the mate-
rials presented in ConsRM web can be freely downloaded. The
ConsRM website is freely available at: https: //www.xjtlu.edu.

cn/biologicalsciences/con. We believe ConsRM will make a very
useful resource for conservation and functional studies of m6A
RNA methylation sites.

Conclusions and discussions
N6-methyladenosine (m6A) is the most prevalent and abundant
RNA modification on mRNAs and lncRNAs with increasing evi-
dence supporting its crucial importance in essential molecular
mechanisms and various diseases. Given that functionally
important m6A sites increase organismal fitness and hence are
more likely to be conserved during evolution, we developed
a novel scoring framework to quantitatively measure the
degree of conservation of individual m6A RNA methylation

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab088/6276017 by N

ational Science & Technology Library user on 12 O
ctober 2022

www.xjtlu.edu.cn/biologicalsciences/con
www.xjtlu.edu.cn/biologicalsciences/con


14 Song et al.

sites. It integrates positional mapping, tissue-specific mapping,
supported from multiple techniques, sequence similarity,
machine learning modeling and genome conservation.

Importantly, we showed that the newly developed scoring
framework can effectively predict the conserved and uncon-
served human m6A sites in mouse and a third species, after
excluding the confounding factor of genome conservation. By
directly learning from the incomplete m6A epitranscriptomes,
ConsRM outperformed well-adopted conservation scores such
as phastCons and phyloP in assessing epitranscriptome conser-
vation. Further analysis revealed that germline mutations were
less likely to affect the more conserved m6A sites compared with
the unconserved sites, while an opposite trend was observed
on the somatic mutations, suggesting that dysregulation of the
conserved m6A sites was more likely to be associated with
disease pathogenesis. Importantly, the conserved m6A sites were
also more likely to fall within the binding regions of various
RNA-binding proteins, especially m6A readers.

Due to limited data availability, tissue-specific mapping was
not emphasized in the current version of ConsRM. Among the
56 epitranscriptomes we collected in this study, there exist
only four pairs (totally eight) of matched tissues in different
species, and all of them are between human and mouse.
Instead of considering only matched tissues, the ConsRM
framework acknowledges conservation in a broader sense,
i.e. m6A co-occurred on the homologous loci of different
species, including in unmatched tissue types. We showed in
Supplementary Table S6 that, although not as strong as the
conservation in matched tissues (fold enrichment of 68.17),
strong conservation was also observed between the epitran-
scriptomes of unmatched tissues (averaged fold enrichment of
62.11), suggesting that general conservation, which does not
require matching of tissue type, is also of critical biological
importance. Nevertheless, tissue specificity may play a more
important role in epitranscriptome conservation analysis as
increasing datasets are accumulated for matched tissues in
different species.

To share our findings more effectively, we developed a user-
friendly online platform ConsRM (https: //www.xjtlu.edu.cn/bio
logicalsciences/con), which contains 177 998 human m6A RNA
methylation sites along with their conservation metrics for con-
servation analysis and general functional prioritization. A web
server was also provided to assess the conservation of a user-
provided list of m6A sites. To the best of our knowledge, this is the
first efforts trying to unveil the functionality of every individual
m6A sites from the conservation perspective.

Future routes to improve the ConsRM scoring could include:
(1) ConsRM incorporated only the epitranscriptome data from
human and mouse without using data from other species such
as rat and fly. This is primarily due to the limited availability
of epitranscriptome data of high-quality. Currently, epitranscrip-
tome data obtained from base-resolution technique are still
very scarce for species other than human and mouse. It should
be interesting how the proposed ConsRM framework can be
extended to multiple species when epitranscriptome datasets
are more abundantly available. (2) The proposed ConsRM frame-
work was trained with only conservation labels, i.e. the presence
or absence of the m6A sites at the matched locus in human
and mouse transcriptome. Considering that conservation and
functionality are often highly correlated, additional evidence can
be integrated into the ConsRM scoring framework for enhancing
its capability of assessing and predicting the conservation and
functionality of individual RNA methylation sites, including but

not limited to the binding sites of RNA-binding proteins, the
splicing sites and the SNPs.

Key Points
• In this study, we performed a comparative conserva-

tion analysis of the human and mouse m6A epitran-
scriptomes at single site resolution.

• A novel scoring framework, ConsRM, was devised to
quantitatively measure the degree of conservation of
individual m6A sites. ConsRM integrates multiple
information sources and a positive-unlabeled
machine learning framework, which integrated
genomic and sequence features to trace subtle hints
of epitranscriptome layer conservation.

• We showed that ConsRM outperformed well-adopted
conservation scores (phastCons and phyloP) in distin-
guishing the conserved and unconserved m6A sites.
Additionally, the m6A sites with a higher ConsRM
score are more likely to be functionally important.

• We further developed an online database containing
the conservation metrics of 177 998 distinct human
m6A sites to support conservation analysis and func-
tional prioritization of individual m6A sites. And it is
freely accessible at: https: //www.xjtlu.edu.cn/biologi
calsciences/con.
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