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Abstract

Motivation: The distribution of biological features strongly indicates their functional relevance. Compared to DNA-
related features, deciphering the distribution of mRNA-related features is non-trivial due to the existence of isoform
ambiguity and compositional diversity of mRNAs.

Results: We propose here a rigorous statistical framework, MetaTX, for deciphering the distribution of mRNA-
related features. Through a standardized mRNA model, MetaTX firstly unifies various mRNA transcripts of diverse
compositions, and then corrects the isoform ambiguity by incorporating the overall distribution pattern of the fea-
tures through an EM algorithm. MetaTX was tested on both simulated and real data. Results suggested that MetaTX
substantially outperformed existing direct methods on simulated datasets, and that a more informative distribution
pattern was produced for all the three datasets tested, which contain N6-Methyladenosine sites generated by differ-
ent technologies. MetaTX should make a useful tool for studying the distribution and functions of mRNA-related bio-
logical features, especially for mRNA modifications such as N6-Methyladenosine.

Availability and implementation: The MetaTX R package is freely available at GitHub: https://github.com/yue-wang-
biomath/MetaTX.1.0.

Contact: jia.meng@xjtlu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent development of high-throughput sequencing technologies
has enabled the transcriptome-wide profiling of RNA modification
sites (Dominissini et al., 2012, 2013; Meyer et al., 2012; Schaefer
et al., 2008). To date, more than 170 different types of RNA modifi-
cation have been identified in all three kingdoms of life, many of
which have been found to play important roles in various biological
processes. For example, N6-Methyladenosine (m6A) can regulate the
stability and translation efficiency of mRNA (Mauer et al., 2017;
Slobodin et al., 2017; Wang et al., 2014, 2015), and affect the circa-
dian clock, cell differentiation, neuron production, alternative splic-
ing and RNA–protein interaction (Fustin et al., 2013; Geula et al.,
2015; Liu et al., 2015; Pendleton et al., 2017).

One basic way to characterize a biological feature is to see
how it is distributed with respect to a gene, which may be shown
in the form of a metagene plot (Beauparlant et al., 2016), also
referred to as a meta-gene (Shin et al., 2009) or aggregation plot
(Kundaje et al., 2012). The distribution of a biological feature
strongly indicates the potential functional relevance of the feature
of interests, although such association may not be direct or causal.
For example, the enrichment of histone modification H3K4me3
near to transcription start sites is clearly linked to its transcription
initialization function (Barski et al., 2007). However, compared to
DNA-related features (such as histone modification and DNA
methylation), deciphering the distribution of mRNA-related fea-
tures (such as mRNA modifications) is non-trivial due to the fol-
lowing reasons:
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• Isoform ambiguity. Although actually located in the heteroge-

neous transcriptome, mRNA-related biological features are often

denoted only by genome-based coordinates in bioinformatics

databases. The isoform-specific belongings of mRNA-related fea-

tures may be unavailable in the presence of multiple isoform

transcription of the same gene due to technical limitations. For

example, most of the existing epitranscriptome profiling

approaches, such as MeRIP-seq and miCLIP, suffer from the iso-

form ambiguity issue, and instead report only the genome-based

coordinates of RNA modifications. When an RNA modification

site overlaps with multiple transcripts according to the transcrip-

tome annotation, it is not clear which transcript is associated

with the site. This creates obvious difficulty when characterizing

the distribution of the feature of interest.
• More complex landscape of mRNAs. The distribution analysis

for DNA-related features is usually based on two landmarks

only, i.e. the transcription start and transcription end positions,

while the analysis of mRNA-related features should involve four

landmarks of the mRNAs molecule, i.e. 50 end, start codon, stop

codon and 30 end of mRNAs, making it more complex than the

case of DNA-related features.
• Compositional diversity of mRNAs. In addition, it is important

to note the existence of compositional diversity among different

mRNAs. For example, some mRNAs may have short CDS but a

super long 30UTR, while some others may have very short

30UTR, or even no 30UTR at all for some cases, according to the

transcriptome annotation database. The vast compositional di-

versity among different mRNAs makes it difficult to compare

across multiple mRNAs (or genes), and may bring concerns

about the validity of the overall distribution pattern necessary

for characterizing mRNA-related features.

The reasons provided above (see Fig. 1), together compound the
difficulty and complexity of distribution characterization for
mRNA-related features.

To date, a number of software tools have been developed for
deciphering the distribution of mRNA-related features. Guitar was
the first method dedicated to sketching the transcriptomic view of
RNA-related genomic features, and provided an open source R/
Bioconductor package (Cui et al., 2016). The Perl/R pipeline
MetaPlotR was invented for plotting metagenes of various modified
sites (Olarerin-George and Jaffrey, 2017). A Shiny web framework-

based web server txCoords was invented for transcriptomic peak re-
mapping (Yan et al., 2017). The epitranscriptome database MeTDB
(Liu et al., 2018) provided a web-based graphical user interface for
the Guitar R package (Cui et al., 2016). The RNA modification an-
notation database, RNAmod, also supported metagene plot func-
tionality along with various annotations of diverse mRNA
modifications in different species (Liu and Gregory, 2019). Despite
the efforts that have been made, only simple heuristic strategies have
been taken by the above approaches to resolve the aforementioned
difficulties, e.g. retaining only the longest transcript of a gene in the
analysis to avoid isoform ambiguity, keeping only the mRNAs with
both 50UTR and 3UTR longer than 100 nt to ensure they are rela-
tively comparable. None of the above approaches quantitatively for-
mulated the problem of concern, and a general and rigorous
solution has yet to be available.

We propose here a rigorous statistical framework, MetaTX, for
deciphering the distribution of mRNA-related features in the pres-
ence of isoform ambiguity and compositional diversity of mRNAs.
Through a standardized mRNA model, MetaTX first unifies various
mRNA transcripts, some of which may have vastly different compo-
sitions, and then corrects the isoform ambiguity by incorporating
the overall distribution pattern of the feature through an EM algo-
rithm via a latent variable. MetaTX was tested on both simulation
data and real RNA N6-methyladenosine data generated from three
different epitranscriptome profiling approaches (Chen et al., 2015;
Olarerin-George and Jaffrey, 2017; Schwartz et al., 2014). Results
suggested that MetaTX consistently exhibited an improved perform-
ance with higher accuracy on simulated data compared to the
Guitar (Cui et al., 2016) and MetaPlotR (Olarerin-George and
Jaffrey, 2017), which did not consider biases from isoform ambigu-
ity, and reported more prominent distribution patterns for all the
three datasets tested. MetaTX is available as an open source R pack-
age, and is a useful tool for studying the distribution and functions
of mRNA-related biological features, especially for mRNA modifi-
cations, such as N6-Methyladenosine and Pseudouridylation.

2 Materials and methods

In this section, we first introduce the standard mRNA model,
through which mRNAs of diverse compositions may be unified, and
then propose our overall formulation for the distribution analysis of
mRNA-related features. An EM solution is then provided to resolve
the isoform ambiguity problem via the overall distribution pattern
inferred.

2.1 Coordinate standardization
To unify the mRNAs with diverse composition, we considered a
standard mRNA model, in which the three main components of
mRNA (50UTR, CDS and 30UTR) were each divided into the same
number of bins of equal width, for every individual mRNA. Figure 2
illustrates the process of coordinate standardization, and we refer to
each bin of mRNA by its coordinate on the standardized mRNA
model. Conceivably, as the corresponding coordinates on differentIsoform 3

Isoform 1

Isoform 2

Isoform 4

Transcriptome Annotation

Genome

RNA modification site

Fig. 1. Isoform ambiguity and compositional diversity of mRNAs. Although physic-

ally located on the RNAs, many mRNA-related features are only recorded by gen-

ome-based coordinates, the transcript-level to which they belong remains unclear

due to technical limitations. In the above example, the RNA modification site is

denoted by genome-based coordinate, and overlaps with four isoform transcripts of

the same gene. It may be associated with the 30UTR of isoform 1, near the stop

codon on the CDS of isoform 2, etc., which may cause problems when characteriz-

ing the distribution of this mRNA-related feature. Note that, isoform 1 has longer

30UTR, isoform 2 has no 30UTR, and isoform 3 has longer 50 UTR, while isoform 4

has no 50 UTR at all. The compositional difference may make it difficult to compare

across multiple mRNAs of the same or different genes

5'UTR

CDS

3’UTR

mRNA 1

mRNA 2

Standard mRNA

mRNA 3

Fig. 2. Coordinate standardization. The three main components of mRNA, i.e.

50UTR, CDS and 30UTR, were each divided into the same number of bins of equal

width, respectively, for every individual mRNA. As the corresponding bins (referred

to as coordinates) on different mRNAs are located on biologically similar region,

they are likely to be associated with the same type of biological features. The coordi-

nates of mRNAs, which are of diverse composition, were then made comparable
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mRNAs are located on biologically similar regions, they are likely to
be associated with the same type of biological features, or regulated
by the same type of signal (such as the same type of RNA modifica-

tion). The coordinates of different mRNA were then made compar-
able. It is worth noting that, although not explicitly stated, many

existing approaches will have assumed a similar standardized
mRNA model in their analysis.

In practice, we also considered the flanking regions of the
mRNAs, including 1 kb promoter regions before the 50 end and 1 kb
tail region after the 30 end. These two regions are also independently

divided into the same number of bins with equal width. Although
theoretically there should be no mRNA-related features originating

from these two regions, there are always quite a few mRNA-related
features that fall into these regions due to incomplete transcriptome
annotation, isoform ambiguity, noise, etc. These two regions are

used as the negative control regions in our analysis; the signal within
these two regions directly reflects analysis bias.

2.2 The MetaTX model
2.2.1 Basic formulation

We refer mRNA features to biological features that reside on

mRNAs, such as, m6A RNA methylation sites, microRNA binding
site, etc. Of interests here is the distribution of mRNA-related fea-

tures over the standard mRNA model, as is shown in a metagene
plot. We denote the total number of mRNA-related features by S. As
previously stated, we independently divided the 50UTR, CDS and

30UTR of mRNAs into a number of bins with equal width, respect-
ively. We assume there are a total of C bins (or coordinates) on each
mRNA. The parameter C is essentially the resolution of our distribu-

tion analysis. A greater C may result in a distribution analysis with
high-resolution, but also increases the computation load.

With the coordinates of mRNA standardized, it is now possible
to calculate the standardized coordinate of each mRNA-related fea-

ture in the mRNA that overlapped with it. Let T represent the total
number of transcripts. We denote the overlap between features and
mRNAs with a three dimensional matrix O :¼
fos;t;cjs ¼ 1; . . . :; S; t ¼ 1; . . . ;T; c ¼ 1; . . . :;Cg; with os;t;c ¼ 1 indi-
cating the sth feature overlap with the cth coordinate on the tth
mRNAs on the genome, suggesting a possible association between
the two; and os;t;c ¼ 0 otherwise. It should be noted that a feature
may overlap with more than one mRNAs due to isoform ambiguity,

and os;t;c ¼ 1 does not necessarily mean that the sth feature is actual-
ly associated with the tth mRNA.

In addition, we denote the width of the cth coordinate on the tth
transcript by wt;c with t ¼ f1; . . . ;Tg and c ¼ f1; . . . ;Cg: This par-
ameter is important in penalizing the varying width of the corre-

sponding bins on different mRNAs. When the corresponding
component is not available, e.g. an mRNA without 30UTR, the

width of the corresponding bin (coordinate) should be set to 0.

2.2.2 Maximum a likelihood estimation (MLE)

We define a parameter set H :¼ facjc ¼ 1; . . . :;Cg; where ac is the
probability that a site is located on the cth coordinate of mRNA,

and with
PC

c¼1 ac ¼ 1. Due to the alternative splicing, a site may be
located on several distinct transcript isoforms. So, we denote the
probability that the sth site in the observed data O resides on the tth
transcript by a variable ls;t. We should have

PT
t¼1 ls;t ¼ 1.

The probability of observing all overlapping events of a feature

is:

Pðfos;t;cjt ¼ 1; . . . ;T; c ¼ 1; . . . ;CgÞ ¼
XT

t¼1

XC

c¼1

os;t;cls;tac: (1)

With the assumption of each feature being observed independ-
ently, the likelihood of all our observed overlapping events, between

the features and transcripts, can then be represented by:

LðOjHÞ ¼
YS

s¼1

XT

t¼1

XC

c¼1

os;t;cls;tac: (2)

Furthermore, the estimated parameters are denoted by:

Ĥ ¼ argmax
h

log LðHjOÞ: (3)

2.2.3 Weight assignment

Due to isoform ambiguity, a given mRNA-feature may overlap with
multiple transcripts, and the significance of different overlapping
events may not be the same. There exist two ways to resolve the iso-
form ambiguity problem. One way is to pick the highest expressed
isoform when gene expression data is available. Considering the lim-
ited detectability (or sensibility) of biotechnology, it is often safe to
assume the observed phenomenon is associated with the most abun-
dant molecule rather than one with a lower abundance;
Alternatively, an equally popular but more convenient method, is to
consider only the primary transcript, which is usually regarded as
the longest one (Olarerin-George and Jaffrey, 2017).

Since most genes have multiple isoform transcripts, rather than
considering only one isoform transcript with all other transcripts
discarded, we seek to consider all transcripts simultaneously. This
should lead to a more reliable result reflecting more general charac-
teristics of the entire feature set of interest. Specifically, we intro-
duced a weight xt to penalize the overlapping event observed with a
specific transcript, which directly reflects the relative importance of
the transcript in the problem of concern. The probability of observ-
ing all overlapping events of a feature then becomes:

Pðfos;t;cjt ¼ 1; . . . ;T; c ¼ 1; . . . ;CgÞ ¼ ð
XT

t¼1

XC

c¼1

os;t;cls;tacxtÞ=Ws;

(4)

where Ws is a normalizing constant equals to
PT

t¼1

PC

c¼1

os;t;cxt. So, the

likelihood of our observation can be represented by:

LðHjOÞ /
YS

s¼1

XT

t¼1

XC

c¼1

os;t;cls;txtac: (5)

As longer transcripts can provide higher relative resolution with
respect to the location on a standard gene model (see Supplementary
Fig. S2), without loss of generality, MetaTX implements the follow-
ing default setting of xt:

xt ¼ ð
XC

c¼1

wt;cÞk; (6)

where k ¼ 2 represents the degree of penalization for shorter tran-
scripts to favor the primary transcript. Keeping only the longest
transcript for the analysis, as often done in existing studies, would
equate to setting k ¼ 1. When k is set to 0, all transcripts are con-
sidered equally without preference. In addition, it is also possible to
customize xt with other information such as the expression of iso-
form transcripts or a combination of both the expression and tran-
script length.

2.3 The MetaTX model
The MLE problem in (5) may be solved using the Expectation–
Maximization framework (Dempster et al., 1977). We introduced
the latent variables fcs;t;cjs ¼ 1; . . . :; S; t ¼ 1; . . . ;T; c ¼ 1; . . . :;Cg;
where cs;t;c ¼ 1 means the sth feature is physically located at the cth
coordinate in the tth transcript; and cs;t;c ¼ 0 otherwise. Note that
cs;t;c is different from os;t;c, i.e. when cs;t;c ¼ 1, we should have
os;t;c ¼ 1; but the other way around may not be true. Let ps;t;c ¼
Pðcs;t;c ¼ 1jO; HÞ be the conditional probability of the sth feature
located at the cth bin of the tth transcript conditioned on parameters
H and the observed data O. For each feature s, we should have
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PT
t¼1

PC
c¼1 ps;t;c ¼ 1. In addition, ls;t is equivalent to

PC
c¼1 ps;t;c.

Particularly, ls;t takes the same value of ps;t;c where os;t;c ¼ 1.

We define the set of unknown parameters to be estimated as X :
¼ fac; ps;t;cjs ¼ 1; . . . ; S; t ¼ 1; . . . ;T; c ¼ 1; . . . Cg. To estimate the
unknown parameters, an EM algorithm is implemented. In the E
step of the EM framework, we update the latent variable by taking
its expected value:

ps;t;c ¼
os;t;cxtac

PT

i¼1

PC

j¼1

os;i;jxiaj

: (7)

Next, we define F ¼
QS

s¼1

PT

t¼1

PC

c¼1

ps;t;cxtac, which equates to, and is

a simplified result of, the right hand side of (5). Then a lower bound

of F may be found with Jensen’s inequality:

log ð
XC

c¼1

XT

t¼1

ps;t;cxtacÞ �
XC

c¼1

ð
XT

t¼1

ps;t;cxtÞ log ðacÞ: (8)

Taking the right side of (8) as the exponent and the natural con-
stant as the base, leads to:

XT

t¼1

XC

c¼1

ps;t;cxtac �
YC

c¼1

ac

PT
t¼1

ps;t;cxt

: (9)

Finally, we obtained the lower bound of F according to the in-
equality in (9), denoted by:

f ¼
YS

s¼1

YC

c¼1

ac

PT
t¼1

ps;t;cxt

: (10)

According to the Lagrange multiplier method, to maximize
f ðfacgC

c¼1Þ with the constraint
PC

c¼1 ac ¼ 1, is equivalent to solving
the following two equations:

gðfacgC
c¼1Þ ¼

XC

c¼1

ac � 1 ¼ 0

rf ðfacgC
c¼1Þ ¼ krgðfacgC

c¼1Þ:
(11)

Solving (11), f ðfacgC
c¼1Þ attains a maximum when facgC

c¼1 take
values below:

ac ¼

PS

i¼1

PT

j¼1

pi;j;cxj

PS

i¼1

PT

j¼1

PC

l¼1

pi;j;lxj

: (12)

The EM algorithm of our model may then be summarized as follows:

• Given facgC
c¼1 estimate

fps;t;cjs ¼ 1; . . . :; S; t ¼ 1; . . . ;T; c ¼ 1; . . . :;Cg by E step (7).
• Given fps;t;cjs ¼ 1; . . . :; S; t ¼ 1; . . . ;T; c ¼ 1; . . . :;Cg estimate

facgC
c¼1 by M step (12).

• Iteratively perform the above two steps until convergence. The

initial value of each ac is set to 1/C.

2.4 Absolutely abundance of mRNA features
Combined with the actual width wt;c of each mRNA component, we
may obtain the absolute abundance of mRNA-features for each co-
ordinate on the standardized mRNA model, with the unit number of
features per nt sequence of the mRNA transcript, as follows:

dc ¼ Sac=
XT

t¼1

wt;c: (13)

The average abundance of the features on the entire mRNA may
then be calculated in a similar way by:

da ¼ S=ð
XC

c¼1

XT

t¼1

wt;cÞ; (14)

which may be used as a standard to search for the regions (or coor-
dinates) enriched with the feature of interest.

It is important to note that mRNA (rather than DNA) is used as
the background during the calculation of feature abundance. The
shared exons of multiple isoform mRNAs were counted multiple
times for each individual transcript and with all the introns
removed. The absolute and average density dc and da estimated
from our model is thus likely to be different from those returned
from existing genome-based methods. With the help of ggplot2
(Ginestet, 2011) and other tools, our MetaTX R package provides a
visualization of the distribution of mRNA-features alongside the
standard mRNA model. Inclusion of the promoter and tail regions
are also optional.

3 Results

3.1 Testing on simulated data
We firstly validated the proposed method on simulated datasets,
which contained the 50UTR, CDS and 30UTR regions respectively.
When generating the simulated datasets using 1000 transcripts ran-
domly selected from the UCSC gene database, 10 sites were then
randomly picked from each transcript within the relative mRNA
component. As a result, there were a total of 10 000 sites, chosen
from each mRNA component. After remapping, it may be expected
that these sites are arranged evenly within the corresponding mRNA
component, but not in other regions.

We then drew the distribution of the three simulated datasets,
corresponding to 50UTR, CDS and 30UTR, via the Guitar,
MetaPlotR, filter method and MetaTX. Note none of the other
methods except MetaTX consider biases from isoform ambiguity
problem. Guitar counts the mRNA-features multiple times for all
transcripts when isoform ambiguity exists; while MetaPlotR by de-
fault retrains only the primary (or longest) isoform transcript of a
gene to avoid such ambiguity. The filter method discards short
mRNA components (less than 100 nt) to keep only the information
located on long components, which should more informative. We
also included the promoter and tail regions as negative control
regions, which do not correspond to mRNA regions and thus in the-
ory should not contain signals from mRNA-related features. As
shown in Figure 3a–c, stronger bias was observed in the results of
the direct estimation method and the filter method. After correcting
this isoform ambiguity via the MetaTX model, the accuracy of esti-
mates increased notably.

To quantitatively measure the accuracy of our model, we calcu-
lated the consistency between the estimated distribution and the
ground truth distribution with the Kullback–Leibler (KL) divergence
(Table 1). Results suggested that MetaTX substantially outper-
formed the competing methods (Guitar and MetaPlotR), and the fil-
ter strategy can slightly boost the quality of results by removing less
informative datasets.

3.2 Testing on real data
Next we analyzed N6-methyladenosine (m6A) datasets derived from
different high-throughput sequencing approaches, including an
miCLIP-seq dataset (Linder et al., 2015; Olarerin-George and
Jaffrey, 2017), a PA-m6A-seq dataset (Chen et al., 2015) and an
m6A-seq dataset (Schwartz et al., 2014). N6-methyladenosine is the
most abundant RNA modification on mRNA, and has been
regarded to be enriched near the stop codon of mRNAs
(Dominissini et al., 2012; Meyer et al., 2012).

As is shown in Figure 3d–f, all three methods reported an enrich-
ment of m6A RNA methylation near the stop codon of mRNAs.
Although the ground truth distribution of m6A on mRNAs is un-
available, it is evident that MetaTX reported a more prominent and
reasonable pattern for all the three datasets tested, which is reflected
by the reduced signal at the negative control regions (promoter and
tail DNA regions). The negative control regions do not correspond
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to mRNA transcripts and thus should not carry m6A signals. It is
worth noting that the promoter and tail regions were defined in a
transcript-specific manner, i.e. each transcript has a different set of
promoter and tail. Including all isoforms does not necessarily reduce
the number of sites being assigned to the negative control region.
Because the MetaTX model considers all isoform transcripts includ-
ing the very short ones, it actually has larger proportion of negative
control regions compared to the method which considers only the
longest transcript.

Meanwhile, consistent of our knowledge (Dominissini et al.,
2012; Meyer et al., 2012), a strong enrichment pattern was also
observed around the stop codon compared to the methods without
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Fig. 3. Visualization of the simulated and the real data. The yellow curves are the direct estimates, the red curves are the longest estimates, the purple curves are the filter esti-

mates and the blue curves are the estimates via the MetaTX. Plots (a)–(c) show the estimates of simulated data for 50UTR, CDS and 30UR. The dark blue curves are the ground

truth distribution of each simulated case. Plots (d)–(e) show the estimated distribution of m6A RNA methylation sites derived from three different techniques, which respective-

ly corresponds to the miCLIP-seq dataset, the PA-m6A-seq dataset and the m6A-seq dataset. We show here the smoothed distribution curves. An example of the original bin-

based density plot is shown in Supplementary Figure S1

Table 1. Performance evaluation of MetaTX and competing

methods

Methods The 3 tests (and KL divergence)

30UTR CDS 50UTR

MetaTX 0.07 0.12 0.06

Guitar 0.29 1.02 0.22

MetaPlotR 0.44 1.09 0.32

Filtered 0.25 1.01 0.26
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correction of the isoform ambiguity. The correction seems particu-
larly effective for the PA-m6A-seq dataset shown in Figure 3e.
Importantly, MetaTX method achieved very stable performance
even when we discard all the features without isoform ambiguity
and keep only those overlap with multiple isoform transcripts, sug-
gesting the capability of MetaTX in dealing with features with high
degree of isoform ambiguity (see Supplementary Fig. S3). In another
case study, we showed a different RNA modification mark, m5C
RNA methylation, is enriched at the 50UTRs in human
(Supplementary Fig. S4).

3.3 MetaTX package
An R package implementing the proposed MetaTX model was
developed for estimating and visualizing the distribution density of
mRNA-related features (dc) along the standard mRNA model.
MetaTX requires genome-based locations of mRNA-related features
and the associated transcriptome annotations in TxDb format
(Lawrence et al., 2013). The standardized coordinates of mRNA-
related features are calculated for the 50UTR, CDS and 30UTR
regions, with each region is divided into a user-defined number of
bins (Default 10) with equal length. Including the promoter or the
tail DNA regions is optional.

The MetaTX package has a few useful functions. The
remapCoord function calculates which bin and which component a
particular feature overlaps with according to the genome-based
coordinates (the O matrix). The metaTXplot function returns a
density plot of the input feature set on a standard mRNA model,
which supports customized relative length of different mRNA com-
ponents during visualization, e.g. a shorter 50UTR and longer CDS
(see Supplementary Figs S5 and S6). The package also provides an
isoformProb function that can return the probabilities of a particular
feature being located on different isoforms (ps;t;c). The newly devel-
oped MetaTX R package is freely available at the GitHub repositor-
y(https://github.com/yue-wang-biomath/MetaTX.1.0) with
examples and detailed documentation.

4 Conclusions

The distribution of a biological feature strongly indicates its func-
tions, and is often the first step when characterizing its functional
relevance. To date, a number of studies have been proposed for dis-
tribution analysis of mRNA-related features, but none of them pro-
vided a quantitative formulation for the problem of concern.

We proposed here the first rigorous statistical model, MetaTX,
together with its EM solution for estimating the distribution of
mRNA-related features in the presence of isoform ambiguity and
differential composition among mRNAs. MetaTX was tested on
both simulated data and RNA N6-methyladenosine data derived
from different high-throughput sequencing approaches, and demon-
strated stable performance with more prominent and reasonable dis-
tribution patterns for all the datasets tested. An open source R
package was developed for estimating and sketching a global view
of mRNA-related features along the standard mRNA model. We be-
lieve that MetaTX should make a useful tool for studying the distri-
bution and functions of mRNA-related biological features,
especially for mRNA modifications such as N6-methyladenosine.

From modeling perspective, MetaTX model is substantially dif-
ferent from existing approaches for resolving the ambiguity in RNA
data, which usually relies on the fact that the read distribution is
uniform on a transcript. On the contrary, MetaTX model relied on
the non-uniform distribution of mRNA-related features on the entire
transcripts, i.e. the tendency of the features to be enriched or
depleted at different transcript coordinates.

For the work reported here we have not discussed: the possibility
of an mRNA feature overlapping with multiple bins of the same
transcript, the filtering of highly noisy features mapped to too many
transcripts to improve data quality, the possibility of multiple fea-
tures located on different transcripts being mapped to the same
genome-based coordinate, or the possibility of incomplete or even
incorrect transcriptome annotation. All of these will have a

profound impact on the analysis results obtained using the MetaTX
method. Meanwhile, the EM algorithms do not guarantee to con-
verge to the global optimum, especially on a small dataset.

It is worth noting that there may be other interesting landmarks
on transcripts. For example, it was reported previously that 70% of
m6A sites were found around the 30UTR’s last exons (Ke et al.,
2015), making the last exon also of interests. However, because the
starting position of the last exon can appear before or after the stop
codon of the corresponding transcripts, the last codon cannot be
integrated into the current MetaTX model. Nevertheless, it should
be fairly straightforward to capture the distribution patterns with re-
spect to new landmarks by altering the transcriptome annotations,
e.g. for the MetaTX R package to acknowledge the last exon as the
new landmark of interests, we may simply alter the transcriptome
annotation by labeling the last exon–exon junctions as the ‘pseudo
stop codons’.

We discussed in this work the application of MetaTX model to
base-resolution features only. It should be fairly straightforward to
extend the model to cover wider features such as microRNA binding
sites. However, more complicated weighting strategy will be neces-
sary for dealing cases, e.g. an mRNA feature of 250 nt width has
100 nt overlap with one transcript and 150 nt overlaps with another
transcripts. Furthermore, although the MetaTX model is fairly effi-
cient and can handle transcriptome-wide feature sets, it cannot be
applied directly to millions of features due to the computational
complicity of the model. Additional work will be needed to allow
the model correct raw sequence alignments generated from high
throughput RNA sequencing experiment.

In addition, although our model was originally aimed at deci-
phering the overall distribution pattern of mRNA-related features, it
is noteworthy that it has explicitly resolved the isoform-specific be-
longings of mRNA-related features through the calculation of the
parameter ps;t;c, i.e. a by-product of the MetaTX model is the proba-
bilities of a particular feature being located on different isoforms;
however, the accuracy and reliability of these estimates remains to
be examined and tested.

Funding

National Natural Science Foundation of China [31671373]; XJTLU Key

Program Special Fund [KSF-T-01]. This work was partially supported by the

AI University Research Centre through XJTLU Key Programme Special Fund

(KSF-P-02).

Conflict of Interest: none declared.

References

Barski,A. et al. (2007) High-resolution profiling of histone methylations in the

human genome. Cell, 129, 823–837.

Beauparlant,C.J. et al. (2016) Metagene profiles analyses reveal regulatory ele-

ment’s factor-specific recruitment patterns. PLoS Comput. Biol., 12,

e1004751.

Chen,K. et al. (2015) High-resolution N(6)-methyladenosine (m(6) A) map

using photo-crosslinking-assisted m(6) A sequencing. Angew. Chem. (Int.

Ed. English), 54, 1587–1590.

Cui,X. et al. (2016) Guitar: an R/bioconductor package for gene annotation

guided transcriptomic analysis of RNA-related genomic features. BioMed

Res. Int., 2016, 1–8367534.

Dempster,A.P. et al. (1977) Maximum likelihood from incomplete data via

the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological), 39, 1–22.

Dominissini,D. et al. (2013) Transcriptome-wide mapping of

N(6)-methyladenosine by m(6)A-seq based on immunocapturing and mas-

sively parallel sequencing. Nat. Protoc., 8, 176–189.

Dominissini,D. et al. (2012) Topology of the human and mouse m6A RNA

methylomes revealed by m6A-seq. Nature, 485, 201–206.

Fustin,J.-M. et al. (2013) RNA-methylation-dependent RNA processing con-

trols the speed of the circadian clock. Cell, 155, 793–806.

Geula,S. et al. (2015) Stem cells. m6A mRNA methylation facilitates reso-

lution of naı̈ve pluripotency toward differentiation. Science, 347,

1002–1006.

1290 Y.Wang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/9/1285/5949013 by Fujian M
edical U

niversity user on 21 O
ctober 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa938#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa938#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa938#supplementary-data
https://github.com/yue-wang-biomath/MetaTX.1.0


Ginestet,C. (2011) ggplot2: elegant graphics for data analysis. J. R. Stat. Soc.

Ser. A (Stat. Soc.), 174, 245–246.

Ke,S. et al. (2015) A majority of m6A residues are in the last exons, allowing

the potential for 30 UTR regulation. Genes Dev., 29, 2037–2053.

Kundaje,A. et al. (2012) Ubiquitous heterogeneity and asymmetry of the chro-

matin environment at regulatory elements. Genome Res., 22, 1735–1747.

Lawrence,M. et al. (2013) Software for computing and annotating genomic

ranges. PLoS Comput. Biol., 9, e1003118–e1003118.

Linder,B. et al. (2015) Single-nucleotide-resolution mapping of m6A and

m6Am throughout the transcriptome. Nat. Methods, 12, 767–772.

Liu,H. et al. (2018) MeT-DB V2.0: elucidating context-specific functions of

N6-methyl-adenosine methyltranscriptome. Nucleic Acids Res., 46,

D281–D287.

Liu,N. et al. (2015) N(6)-methyladenosine-dependent RNA structural

switches regulate RNA–protein interactions. Nature, 518, 560–564.

Liu,Q. and Gregory,R.I. (2019) RNAmod: an integrated system for the anno-

tation of mRNA modifications. Nucleic Acids Res., 47, W548–W555.

Mauer,J. et al. (2017) Reversible methylation of m(6)A(m) in the 50 cap con-

trols mRNA stability. Nature, 541, 371–375.

Meyer,K.D. et al. (2012) Comprehensive analysis of mRNA methylation

reveals enrichment in 30 UTRs and near stop codons. Cell, 149, 1635–1646.

Olarerin-George,A.O. and Jaffrey,S.R. (2017) MetaPlotR: a Perl/R pipeline

for plotting metagenes of nucleotide modifications and other transcriptomic

sites. Bioinformatics, 33, 1563–1564.

Pendleton,K.E. et al. (2017) The U6 snRNA m(6)A methyltransferase

METTL16 regulates SAM synthetase intron retention. Cell, 169,

824–835.e814.

Schaefer,M. et al. (2008) RNA cytosine methylation analysis by bisulfite

sequencing. Nucleic Acids Res., 37, e12–e12.

Schwartz,S. et al. (2014) Perturbation of m6A writers reveals two distinct

classes of mRNA methylation at internal and 50 sites. Cell Rep., 8, 284–296.

Shin,H. et al. (2009) CEAS: cis-regulatory element annotation system.

Bioinformatics, 25, 2605–2606.

Slobodin,B. et al. (2017) Transcription impacts the efficiency of mRNA trans-

lation via co-transcriptional N6-adenosine methylation. Cell, 169,

326–337.e312.

Wang,X. et al. (2015) N(6)-methyladenosine modulates messenger RNA

translation efficiency. Cell, 161, 1388–1399.

Wang,Y. et al. (2014) N6-methyladenosine modification destabilizes develop-

mental regulators in embryonic stem cells. Nat. Cell Biol., 16, 191–198.

Yan,Z. et al. (2017) txCoords: a novel web application for transcriptomic peak

re-mapping. IEEE/ACM Trans. Comput. Biol. Bioinform., 14, 746–748.

MetaTX 1291

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/9/1285/5949013 by Fujian M
edical U

niversity user on 21 O
ctober 2022


