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Abstract

Background: Over one hundred different types of post-transcriptional RNA modifications have been identified in
human. Researchers discovered that RNA modifications can regulate various biological processes, and RNA
methylation, especially N6-methyladenosine, has become one of the most researched topics in epigenetics.

Results: To date, the study of epitranscriptome layer gene regulation is mostly focused on the function of mediator
proteins of RNA methylation, i.e., the readers, writers and erasers. There is limited investigation of the functional
relevance of individual m6A RNA methylation site. To address this, we annotated human m6A sites in large-scale
based on the guilt-by-association principle from an RNA co-methylation network. It is constructed based on public
human MeRIP-Seq datasets profiling the m6A epitranscriptome under 32 independent experimental conditions. By
systematically examining the network characteristics obtained from the RNA methylation profiles, a total of 339,158
putative gene ontology functions associated with 1446 human m6A sites were identified. These are biological
functions that may be regulated at epitranscriptome layer via reversible m6A RNA methylation. The results were
further validated on a soft benchmark by comparing to a random predictor.

Conclusions: An online web server m6Acomet was constructed to support direct query for the predicted
biological functions of m6A sites as well as the sites exhibiting co-methylated patterns at the epitranscriptome layer.
The m6Acomet web server is freely available at: www.xjtlu.edu.cn/biologicalsciences/m6acomet.

Background
N6-methyladenosine (m6A) is one of the most common
RNA post-transcriptional chemical modifications. It is
formed with an addition of a methyl group at the 6′ pos-
ition of adenosine in RNA [1]. It is abundant in mRNA,
snRNA and rRNA among plants, viruses and eukaryotes
[2, 3]. In mammals, methyltransferases (m6A writer),
such as METTL3, METTL14 and WTAP, together with
demethylases (m6A eraser), and YTH domain family of
proteins (m6A reader), regulate the complex reverse
mechanism of m6A [4]. The m6A was found to influence

diverse biological regulations such as RNA stability [5],
heat shock response [6], and circadian clock [7] etc.
Diseases, such as cancer [8] are proved to be regulated
by m6A as well. Current research focuses more on the
overall functions or regulations involving m6A. However,
the biological function of each individual RNA methyla-
tion site is not exactly known. Although the regulatory
roles of several specific methylation sites have been elu-
cidated, it is very expensive to identify the functions of
RNA methylation sites with wet-lab experiments.
Instead, computational approach may provide a viable
venue. It is possible that the functions of each individual
RNA methylation site can be predicted from the statis-
tical evidence such as strong correlation with the expres-
sion level of genes whose functions are already known.
The regulatory functions of methylation sites in

biological processes are still under research [9–11]. It is
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conceivable to assume that m6A sites that have similar
properties would share similar biological functions. In-
deed, our previous studies showed that the RNA methy-
lation sites consisting of an epitranscriptome module,
which is a number of RNA methylation sites whose
methylation level are co-regulated across different ex-
perimental conditions, are more likely to be functionally
enriched compared to a random module [12, 13]. This
strongly suggests that the epitranscriptome functions of
the RNA methylation sites may be identified based on
existing high-throughput sequencing data. It is meaning-
ful to investigate the regulatory role of these sites by
constructing the co-methylation network with the
guilt-by-association principle. The guilt-by-association is
a validated principle in network research, which states that
if two patterns share some similar properties, they are most
likely to share a connection. To be more specific, gene pairs
are more likely to be functionally related if they show
similar expression patterns across samples [14]. This
principle has been widely applied in lncRNA functional
prediction by the protein-protein interaction network [15],
co-transcription factor network, and co-expression network
[14]. In our research, we suppose that, if both methylation
sites are hyper- or hypo-methylated simultaneously across
various samples, they will be considered co-methylated and
often of related biological interests. In the co-methylation
network, each node represents a methylation site, and each
edge denotes a strong correlation or anti-correlation
between each pair of sites.
The datasets used for generating the methylation level

on sites in this program are all produced by the
MeRIP-Seq technique [1, 16]. Methylated RNA immuno-
precipitation sequencing (MeRIP-Seq) technique was de-
veloped to investigate m6A in epitranscriptome analysis
[17]. The mRNAs which contain m6A sites are first frag-
mented into short pieces of ~ 100 bp long, following
which fragments with methylation sites are filtered by
antibodies in immunoprecipitate as IP samples, while raw
fragments are treated as Input control samples [18]. After
mapping both the reads of eluted IP sample and control
(Input) sample back to the reference genome, the
peak-calling or methylation evaluation algorithm will be
employed to detect the m6A peaks for furthering investi-
gation [19]. The mi-CLIP [20] and the m6A-CLIP [21]
were developed recently to generate single-base resolution
m6A profile, and the upcoming data sets were utilized to
obtain the m6A sites directly in the project. The principle
of mi-CLIP is to bind the cross-linking RNA-m6A anti-
body to specific sites where mutagenesis will occur during
reverse transcription of the antibody-bound RNA. Truca-
tions or C-T transitions, which are mutagenesis signa-
tures, can be sequenced to precisely map m6A sites. The
m6A-CLIP located thousands of m6A residues using
cross-linking immunoprecipitation technique (UV CLIP)

with high accuracy since only the m6A-containing oligo-
nucleotide can attract the m6A antibody.
Before constructing the co-methylation network, the

matrix which gives the methylation level on each site over
various samples needs to be constructed. However, pre-
processing is required for the raw data due to technical or
biological biases. The DESeq2 [22] is a R package which
uses shrinkage estimation for fold changes, and dispersion
for gene-level differential analysis with RNA-Seq data. The
reproducibility and stability of results are improved by
shrinkage estimators after using DESeq2. This algorithm
can reduce type-I errors and offer consistent performance
on small studies. Guanine-cytosine (GC) content is one of
the critical technical variabilities. It was shown to have sig-
nificant impact on m6A-seq [23] and other sequencing
techniques such as RNA-seq and ChIP-seq. The CQN al-
gorithm developed by Hansen [24] is aimed to reduce sys-
tematic bias in GC content. It combines the robust
generalized regression and conditional quantile
normalization to improve the precision of gene expression
level measurement. In our project, DESeq2 and CQN are
applied to estimate the methylation level of each m6A site.
After building the complex network, cellular modules

were identified for further annotation with gene ontol-
ogy (GO). The GO is a bioinformatics initiation to unify
gene product within species [25]. We mainly used GO
for annotating enrichment analysis on gene sets to de-
scribe the functions of a specific gene list. The GO en-
richment analysis will determine which GO terms are
represented, generate the GO term list with statistical
evidence such as the p-value. The GO terms may be
classified into three main categories: biological process
(BP), cellular component (CC) and molecular function
(MF). To improve the annotation performance, the
enriched GO terms will be reduced to generic GO slim
terms, by skipping specific fine-grained terms, which is
useful when board classifications of function annotation
are required [26].
In this project, we computationally predicted the bio-

logical functions that are likely to be associated with indi-
vidual m6A RNA methylation sites. Using bioinformatics
methods such as clustering, network topological analysis,
as well as enrichment analysis. The results may be queried
directly on a public webserver, which provides predicted
functions for each individual RNA methylation site.

Results
Selection of raw m6A sites and normalization
After filtering the methylation sites corresponding to
lowly expressed genes with low gene expression level
and low read count quantity in IP and Input samples,
the raw predicted single-base resolution human m6A
sites were reduced from 69,446 to 36,542. Furthermore,
17,758 sites were discarded to reduce the number of
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neighboring sites corresponding to the same gene that
are very close to each other. A total of 13,415 sites with
relatively higher median absolute deviation (over 0.4)
among the remained 18,784 sites were kept. We believe
that the m6A sites remained after selection should be
statistically significant. After merging the biological
replicates from the same condition together with methy-
lation level estimation by DESeq2, the GC content bias
were normalized by CQN. The dendrograms in Fig. 1,
constructed using Euclidean distance as the metric,
helped us insight into the joint distribution between
samples with and without the CQN normalization.

Samples from the same cell line and experiment were
labelled with the same color. Samples of the same color
were not clustered together in the dendrogram without
CQN (Fig. 1a). In contrast, after the CQN normalization,
almost all the conditions from the same cell line were
clustered into the same group with highly correlated
methylation patterns (Fig. 1b). This indicates that the
GC content biases were removed. Additionally, we tested
the relative importance of each individual samples, and
found no outliers (Additional file 1: Figure S1). besides,
although the samples perturbed with m6A enzymes
represent an abnormal kind of methylation profiles

A

B

Fig. 1 Correction of technical variability. a The clustered dendrogram of samples before applying CQN to remove technical variability. Many
highly related samples are not clustered closely. b The clustered dendrogram of samples after applying CQN to remove technical variability. More
related samples are clustered together, suggesting that the application of CQN in the analysis is very effective
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and may induce more bias, we didn’t observe signifi-
cant difference between them in determining the
topology of the co-methylation network (Additional
file 1: Figure S2).

Co-methylation network construction
The methylation data of 13,415 sites under 32 conditions
was used to construct the co-methylation network. Since
the location of these sites are known, the genes where
these sites correspond to (Entrez Gene ID & Gene
Symbol) were labeled. A total of 52 sites were dropped
due to the absence of relevant gene annotation, and the
remaining sites were kept for network construction. The
site pair was defined as the co-methylation site pair only

if its scc is ranked in the highest or lowest 10% and its
adjusted p-value is lower than 0.05. According to the
above strategy, the adjacency matrix was constructed to
obtain the linkage between site pairs. The function in
package igraph transformed the format of the matrix to
the igraph format. A network consisting of 18,477 edges
and 13,363 nodes was constructed. The constructed
network with the most significant functions of four main
modules in Cytoscape is shown in Fig. 2. We observed
that majority sites are clustered together in a huge
group, where several modules can be identified. More-
over, we obtained small clusters ranging between 2 and
9 sites. To have a better understanding of the network,
we looked at the degree distribution (see Fig. 3), which

Fig. 2 Visualization of the co-methylation network in Cytoscape. A total of 18,477 edges and 13,363 nodes make up this co-methylation network.
The m6A sites are represented by blue nodes, and gray lines represent the high positive and negative correlation between each node. Majority of
the sites (91.5%) were clustered into a huge module, and few sites share high correlation in methylation level within small modules. Four largest
modules were amplificated and labelled in yellow, and the most significant Gene Ontology term of each module was labelled as well
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unveiled that this co-methylation is a typical scale-free
network. The scale-free network tallies with most
biology networks for its robustness against disruptions.
In the scale-free network, highly connected hubs,
making up a relatively small number of nodes, will
mainly are pivotal in determining the property of the
network. The log-log plot gives an almost linear trend,
with the degree exponents to be around 2.
Additionally, it should be of great interests to compare

the constructed co-methylation network to the co-ex-
pression network. For this purpose, we downloaded the
human co-expression data (Coexpression version:
Has-u.c2–0) from COXPRESdb [27], and built the gene
co-expression network with cut-off threshold 0.8, i.e., if
the Pearson correlation value between two genes is more
than 0.8, the gene pair are considered co-expressed.
Meanwhile, a gene-gene co-methylation network was
converted from the site-site co-methylation network
constructed previously. If two sites are co-methylated,
their hosting genes are considered co-methylated as well.
The gene-gene co-methylation network was then com-
pared to the gene-gene co-expression network. However,
we failed to observe strong topological correlation
between the co-expression and co-methylation networks.
Although is still positive, the Pearson correlation of their
adjacency matrices is only 2.2E-4, which suggests the
epitranscriptome regulatory impact of transcriptional
expression may be relatively weak at global level.

Hub-based method
The annotation of methylation sites relies on the func-
tional enrichment in the hosting genes of their neighbor

sites according to the guilt-by-association principle.
Because the functional information of individual RNA
methylation site is unavailable in existing database, we
consider a soft benchmark by assuming that the
functions of a sites are similar to that of its hosting
genes. In the network, 1899 (14.2%) sites with connec-
tions to more than 3 immediate neighbors are defined as
hub sites. To evaluate the accuracy of the prediction, we
also annotated the predicted functions with the known
GO terms of their corresponding gene. Thus, the
enriched GO BP terms of genes where these hub sites
correspond to were annotated with the Entrez ID using
packages GO.db and AnnotationDbi. The corresponding
genes of 1780 hub sites were annotated with GO BP
terms. We also annotated all the neighboring sites of
each hub site with GO BP terms. Both the annotated
terms were reduced to GO Slim BP terms, and the term
GO:0008150 (biological process) was excluded in anno-
tation results because this term almost occurs in every
reduced GO Slim term. A total of 1446 sites were anno-
tated with more than one GO slim BP term. The terms
occurring as both predicted and known terms were
treated as hit terms. Permutation on sites was performed
to construct the random network. In the random net-
work, the GO BP terms and GO BP slim terms of the
corresponding genes of the hub-sites were the same as
that in the real network, while the predicted terms by
their neighbors were different. We defined recall and
precision to measure the prediction performance, and
two cutoff parameters PV and GN can affect the predic-
tion performance.
We showed in Fig. 4 the relationship between recall

and precision values of both real and random networks
under different cutoffs of PV (circle size) and GN (facet
title). The points in blue are the performance values in
the real network, and the points in red are the perform-
ance values in the random network. The values of recall
and precision in the real network under these cutoffs are
much higher than that in random network, which proves
that the prediction in the real network should be of bio-
logical significance. The recall value is highest (13.8%)
when the values of both GN (16) and PV (10− 1) cutoff
are high. The precision value is highest (15.3%) when
the values of both GN (4) and PV (10− 3) are low. The
recall value is strongly affected by GN, while the preci-
sion value is affected more by PV. Therefore, the PV and
GN will not be set too low or too high to get the reason-
able recall and precision.

Module-based method
It is highly possible that sites within a co-methylated
module share similar functions. Therefore, analyzing the
corresponding genes of methylation sites in the same
module can help us predict the site functions in the

Fig. 3 The degree distribution of the co-methylation network. The
tendency of the degree on the log-log plot fits with power law, and
the degree exponent of this network is close to 2, thus the power-
law degree distribution conforms to scale-free network topology
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module-based method. The igraph object after network
construction was set as the input file of the clustering
algorithm. After clustering the sites with MCL algorithm
(inflation value set to 1.4), 76 modules (2303 sites)
containing 10 or more sites were defined as modules, the
enrichment analysis of GO BP terms of these modules was
performed. All the modules were enriched with more than
one GO BP terms whose p-values are lower than 0.05. After
adjusting the p-value by the BH method, 8 modules were
significantly (adjusted p-value < 0.05) annotated with at
least one GO term. In Fig. 5, the enriched result of the eight
modules in the module-based method is given. The
enriched terms in each module are labeled using different
colors and columns. The size of points in the dot plot gives
an indication of the magnitude of p-values corresponding
to the enriched terms. The shape of points there indicates
the statistical significance of the terms. The GO BP
terms in module 2 (small molecule metabolic process,
organonitrogen compound biosynthetic process, etc.)
and module 3 (co-translational protein targeting to
membrane, protein targeting to ER, etc.) are statisti-
cally significant (shown the Fig. 5).

Overlap of the functional enrichment
To evaluate the prediction accuracies of both methods,
we compare the enriched functions of the same site by
the two methods. Among the 2303 sites annotated by

the module-based method, 1346 (58.4%) sites are anno-
tated in hub-based method. Majority of them (1262,
93.8%) are annotated with one or more GO BP term
predicted by both methods, and about 27 GO BP overlap
terms occur on each site in average. We also calculate
the number of overlap terms in the random network,
with the findings that 61.3% (825) sites are enriched with
one or more GO BP term by both methods, and 3.2
overlap terms occur on each site. Figure 6 is the boxplot
which shows the count of overlap terms predicted by the
hub-based method and the module-based method on
each site. The number of overlapping terms of both pre-
diction methods is higher in the real network than the
random network, indicating that the predicted functions
annotated by the module-based method are credible.

Database construction
To enable the direct query of the predicted functions asso-
ciated with individual m6A RNA methylation sites, we con-
structed a web site m6Acomet, which stands for functional
prediction of m6A RNA methylation sites from RNA
co-metylation network, and is freely available: www.xjtlu.
edu.cn/biologicalsciences/m6acomet. A data table, which
contains the necessary information of sites, is provided, in-
cluding: methylation site ID, position on chromosome,
RNA strand, corresponding Gene Symbol, corresponding
Gene Entrez ID, count of neighbor sites, count of

Fig. 4 Performance of hub-based functional prediction. In the recall-precision plot, blue circles represent values under the real network, and red
circles represent values under the random network. The x-axis and y-axis give the respective values of recall and precision. The number labelled
as title in each facet represents each GN cutoff. The lower PV cutoff represent the smaller circle in the figure. From the figure, the values of recall
and precision in the real network are much higher than the random network with the same cutoff
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corresponding genes of neighbor sites, count of GO BP
terms of the hub gene, count of GO BP Slim terms of the
hub gene, count of GO BP terms of predicted neighbor
genes, count of GO BP Slim terms of the predicted neigh-
bor genes, count of hit terms of the two slim term columns,
and count of the GO BP terms annotated by module-based
method. The detailed information, which includes the exact
GO (or GO slim) terms together with the enrichment
significance (p-value < 0.05) and its neighboring m6A sites
in the RNA co-methylation network, will be shown if the
user clicks on the relevant hyperlinks.

Conclusions
The functional characterization of post-transcriptional
modification sites by wet experiments is extremely

expensive and laborious. For this reason, we propose a
computational framework, for the first time, to predict the
putative functions of individual RNA methylation sites
from an RNA co-methylation network in large-scale.
Specifically, before network construction, the methylation
level on each site was estimated and normalized by
DESeq2 and CQN. Several systematic biases in GC con-
tent and batch effect were adjusted. The raw predicted
m6A sites were further filtered, and only the sites with
substantial biological signals were kept for further analysis.
The RNA co-methylation network was built from
MeRIP-seq data profiling the transcriptome-wide RNA
methylation status in 32 experimental conditions. We
showed that the co-methylation network exhibit typical
scale-free characteristics. The biological functions of each

Fig. 5 GO enrichment plot of the eight most significant modules from the module-based method. The larger the point size means the lower the
p-value of the GO term. The shape in rectangle means the significance in statistics (p-value after BH adjustment is lower than 0.05), while the
shape in circle means the insignificant term. GO BP terms such as RNA processing as well as small molecule metabolic process are
statistically significant
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individual RNA methylation sites were then inferred based
on the guilt-by-association principle. Two different types of
algorithms were developed for functional annotation. We
suppose that the regulation role of each m6A site should be
similar to the annotation roles of its corresponding gene.
For this purpose, the methylation sites with three or more
edges were functionally annotated by the hub-based
method. The prediction performances (recall and precision)
were defined to assess the predictive efficacies of the real
and random networks. The PV and GN were chosen as cut-
off parameters to assess the prediction performance. The
random network was constructed to compare the predic-
tion performance with that from the real network. By tak-
ing advantage of a soft benchmark, our result showed that
the recall and precision values of the real network are both
higher than that of the random network with various cutoff.
In other words, the prediction results in the co-methylation
network suggested higher biological significance. In the
module-based method, sites from largest modules (module
size ≥10) clustered by MCL algorithm were annotated by
GO terms. After comparing the enriched terms of the sites
annotated by both methods, we found that majority of the
sites share overlapping GO terms, suggesting that the
functional enrichment in module-based method is reason-
able. Functional annotation by different methods can
extend the range of annotation terms and increase the
number of predicted sites. The predictions in some cases
by two methods are complementary and coherent, which
reinforce the validity in prediction.

It is worthwhile mentioning that the biological func-
tion of an RNA methylation site may be different from
that of its host gene. The former focused on epitran-
scriptome layer regulation; while the latter may be regu-
lated through any layers of gene expression regulation,
e.g., DNA methylation, post-translation modification,
etc. In this work, we focused specifically on the RNA
methylation profiles, which is governed by RNA epigen-
etics regulation and thus echo biological processes
regulated at epitranscriptome layer. Although the epi-
transcriptome modules (or RNA co-methylation pattern)
have previously been shown to demonstrate functional
relevance of the RNA methylation sites [12, 13], it is, to
the best of our knowledge, that we are the first to use
this property for functional prediction for individual
RNA methylation sites.
The annotation result of the human m6A sites in our

project are presented in an online database m6Acomet.
It supports the query with respect to a biological func-
tion or a number of co-methylated RNA methylation
sites, and may serve as a source of reference for further
biological research.
However, the project still has a few limitations. For

example, the annotation rates for all the filtered methy-
lation sites in both methods are not satisfactory. The
criteria for the construction of the co-methylation net-
work may be too stringent and could be further opti-
mized; more data sources such as protein-protein
interaction, pathways, can be integrated with the RNA
co-methylation network for a more accurate functional
annotation.

Methods
mi-CLIP and m6A-CLIP supported m6A sites
A total of 69,446 human m6A sites reported by six
mi-CLIP and m6A-CLIP experiments, which profiles the
m6A epitranscriptome at base-resolution, were obtained
from the WHISTLE project [20, 21, 28–30]. The m6A
sites were labeled positive and retained for the following
analysis if it embodies the DRACH consensus motifs of
m6A modification and were supported by at least two
out of the total six samples.

MeRIP-Seq data for quantifying the RNA methylation level
The mi-CLIP and m6A-CLIP report only the location of
the methylation site, but do not provide direct quantifi-
cation of the methylation level of these sites. The infor-
mation of the methylation level was obtained from
MeRIP-Seq data. Specifically, 32 samples in 10 publicly
human m6A MeRIP-Seq data sets from published studies
were obtained from public database. All these samples
contain both IP and Input data, and most of them were
selected from the epitranscriptome database MeT-DB
[31], with which it is now possible to construct the RNA

Fig. 6 The enriched terms are more consistent in real network. The
boxplot of the overlap term number in the real network and the
random network at the same methylation site. The box in red
represents the term count in the random network, and the box in
blue represents the term count in the real network. After log10
transforming the term count on y-axis. It is obvious that the overlap
terms are much more in the real network (mean 27) than in the
random network (mean 3.2)
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co-methylation network. The biological replicates under
the same cell line and from the same laboratory were
merged, and the methylation level of the combined sam-
ple is essentially the average of all the biological repli-
cates. Moreover, several outlier samples such as the
sample from HepG2 cell line with heat shock treatment
were dropped before the construction of the network
due to low quality. Table 1 summarizes the data sets
used in this project. All the original data were down-
loaded in SRA format from Gene Expression Omnibus,
and the reads were aligned to human reference genome
(hg19/GRCh37) with aligner Tophat2 [32].

Processing the methylation data
The R package DESeq2 [22] was applied to estimate the
methylation level at each m6A site. All the samples were la-
beled with conditions (IP and Input) and sequence types
(Single-end and Paired-end), and the reads count matrix
was generated by counting the reads which share overlaps
with bins. These bins are 101 bp long with each methyla-
tion site located at the center. The methylation level was
then quantified by calculating the fold enrichment of reads
in the IP sample compared with the input control sample
with DESeq2, which uses shrinkage estimation and con-
siders the over-dispersion of reads. This step produces the
quantification result of the logarithmic fold change indicat-
ing the methylation level of each site. However, we found
that conditions from the same laboratory cell line could not
be classified into the same group by hierarchical clustering.
We suppose that the GC content, which is the common
systematic bias when dealing with RNA-seq data, could be
further reduced. Therefore, the output of DESeq2 was first
normalized by package CQN [33] to reduce the GC bias.
After this additional bias correction, the estimated

methylation level after the normalization by CQN does not
show any GC content bias, and we can see that the condi-
tions from the same cell line could be clustered together.

Site filtering
The methylation sites need to be filtered due to low esti-
mation accuracy on part of the raw sites. These sites
were filtered by the following steps:

i. The methylation level will be masked NA if the
expression value is lower than 8, or the count
number on (IP + Input) samples of the same site is
lower than 50. Throughout all the 32 conditions,
sites should be dropped if too many missing values
(NA count > 15) occur.

ii. Filtering the neighboring sites helps reduce the
influence of replication on functional prediction. If
the distance between two sites is too small, e.g., less
than 50 bp, due to limited resolution of the m6A-
seq technology, it is highly possible that they are
located on the same gene and be annotated with
the same function. We ought to keep one of them
for further annotation. The Spearman correlation
between two methylation sites which are located
closer than 101 bp is calculated. If the correlation
between them is above 0.8, they may be in fact
corresponding to the same m6A site but incorrectly
captured twice due to limited resolution of the
m6A-seq technology. In that case, the site with
lower methylation level will be dropped.

iii. Since a larger variance among different conditions
indicates more obvious functions, sites with median
absolute deviation of methylation level value across
different conditions higher than 0.4 will be retained.

Table 1 Datasets used in the study

ID GEO accession Cell line Treatment Source

1–4 SRR456542-SRR456549, SRR456551-SRR456557 HepG2 UV, HGF, IFN, UT [39]

5–6 SRR903368-SRR903379 U2OS CTL, DAA [40]

7–10 SRR847358-SRR847377 HeLa Ctrl, METTL14-, METTL3-, WTAP- [41]

11–
12

SRR1182582-SRR1182590 ES/NPC hNPC, hESC [42]

13–
18

SRR1182591-SRR1182596, SRR494613-SRR494618, SRR5080301-
SRR50312

Hek293T,
Hek293A

Ctrl, WTAP-, METTL3-, METTL16-

19–
21

SRR1182597-SRR1182602 OKMS D0, D5_WITH_DOX, D5_WO_DOX

22–
26

SRR1182603-SRR1182630 A549 Ctrl, METTL14-, METTL3-, WTAP-,
KIAA1429-

27–
28

SRR3066062-SRR3066069 AML Ctrl, FTO+ [43]

29–
30

SRR5239086-SRR5239109 AML2 Ctrl, METTL3- [44]

31–
32

SRR1035213-SRR1035224 ESC T0, T48 [45]
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After site filtering, the site number was reduced from
69,446 to 13,415, following which quantile normalization
was performed to remove potential batch effect.

Construction of the RNA co-methylation network
The RNA methylation data which contains the methyla-
tion level of 13,415 sites over 32 conditions was used to
construct the RNA co-methylation network. In the
beginning, the Spearman correlation between each site
pair was computed. Fisher’s asymptotic distribution was
applied to estimate the p-value of each Spearman correl-
ation coefficient (scc), and the p-value of each site pair
was adjusted with Bonferroni method. The scc p-value
for each gene pair with Fisher’s asymptotic test was
implemented with function corPvalueFisher in package
WGCNA [34]. The p-values were adjusted with Bonfer-
roni method with function mt.rawp2adjp in package
multtest. Site pairs with high spearman correlation (cor-
relation value ranked in the top or bottom 10%) and low
p-value (lower than 0.05) for their methylation levels are
regarded to be significant co-methylation pair. The adja-
cency matrix was then built to denote the correlation in
methylation level between each pair of sites. To build
the network, function graph.adjacency in package igraph
was applied to create the graphs file, and the degree
distribution of this co-methylation network can be visu-
alized. The power-law degree distribution indicates that
our co-methylation network is a typical scale-free net-
work [35], which means that the majority of the nodes
in the network are connected with few other nodes,
while the minority of the hub nodes are connected with
plenty of nodes. Moreover, the network topological
property will be visualized and analyzed with the profes-
sional network investigation software such as Cytoscape
[36]. The function exportNetworkToCytoscape in pack-
age WGCNA can export the file from the adjacency
matrix for visualization in Cytoscape [36].
The function of each m6A site was annotated with two

different algorithms: hub-based method and module-based
method.

The hub-based method
From the degree distribution of our co-methylation net-
work, it is observed that the minority of hub sites are re-
lated to large number of methylation sites. Since these
hub sites play a significant role in the whole network, it
would be of interest to investigate their functions in hu-
man biological process. The function neighbors in pack-
age igraph [37] helped us find the neighboring sites of
each m6A site.
In hub-based method, the function of the hub methy-

lation site is determined by the enrichment result of its
neighbor sites, and only the sites with more than three
immediate neighbor sites are treated as the hub sites. A

total of 1889 hub sites remained if only those with more
than 3 edges are considered. Before annotating the func-
tion, we assume that the functions of the methylation
sites are the same as the ones in their corresponding
genes. The Entrez Gene ID and Gene Symbol of the
gene corresponding to each hub site and their neighbor-
ing sites were labeled for annotation. Therefore, the
enriched GO BP terms of the neighboring sites on the
genes may convey the function of the hub site. In
addition, the functions of the gene where the hub-site
located can reflect the role of the hub site. We per-
formed the GO BP enrichment analysis on the corre-
sponding gene of the hub site and the corresponding
genes of its neighboring sites. The GO slim terms, which
are the subset of GO term, were applied to reduce the
GO enriched terms. This generic subset is used as the
scope of GO Slim. Since the term GO:0008150 (bio-
logical process) is too general, it was removed from the
analysis as well. The consistent terms between GO Slim
BP terms of the hub gene, where each hub site located,
and GO Slim BP terms of the neighbor genes, where the
neighbor sites of the same hub site located, were treated
as the reliably predicted functions of each hub site. To
evaluate the prediction performance of the predicted
GO terms, the functional enrichment p-value of the slim
term (PV) and the number of the enriched slim terms of
neighbor sites (GN) are calculated and set as the cutoff
parameters. The recall and precision of the prediction
performance are defined as:

Recall ¼
P

Both knownpredicted GO term number
P

Known GO term number

Precision ¼
P

Both knownpredicted GO term number
P

Predicted GO term number

GO terms of the hub site, the corresponding neigh-
bors, and their overlap on each PV and GN cutoff were
generated separately by previous data. The values of re-
call and precision for each cutoff were calculated to
evaluate the prediction performance.

Permutation on the network
To assess the efficacies of the predicted GO terms,
permutation on sites was performed to rebuild the
random network. If both the recall and precision values
of real network are much higher than that of the
random network, the predicted functions in the func-
tional network should be biologically significant. The
functions rewire and keeping_degseq in the igraph pack-
age were used to randomly rewire the edges without cre-
ating multiple edges, keeping the degree distribution of
the raw graph unchanged without loop edges. The rewir-
ing algorithm substitutes two arbitrary edges in each
step ((a, b) and (c, d)) with the edges which are not

Wu et al. BMC Bioinformatics          (2019) 20:223 Page 10 of 12



existed in the raw graph as ((a, d) and (c, b)). The ex-
changing steps were repeated 100 times for the original
graph. After the permutation, the number of neighbors
of the same site does not change. This is similarly
carried out on the random network as well. Since it is
highly possible that the neighboring sites of the same
hub site correspond to the same gene in the real net-
work, this might result in a lower overall p-value of
terms annotated in the random network. We con-
strained the neighbor gene number of the same hub site
in the random network as that in the real network. The
GO and GO slim terms enriched in permutation
network together with other parameters were used to
predict the function of methylation sites. The results of
the random network were compared to that of the real
network in terms of the performance of prediction.

The module-based method
Another way to predict the site function is to investigate
the modules in the network. It is common that sites
among the same co-methylated module share similar
functions. In the module-based method, the Markov
Cluster (MCL) algorithm [38] is chosen as the clustering
algorithm in grouping methylation sites. MCL is a scal-
able cluster algorithm, which is based on the stochastic
flow in graphs to identify modules with random walk.
We transformed the co-methylation network into the
MCL input format, which contained the information of
two nodes (sites) and the edge weight between nodes.
With the inflation value set to 1.4 by default, the mod-
ules containing more than 9 sites were identified to be
significant modules. These clustered sites will then be
annotated according to the Gene Ontology of their host-
ing genes. The terms of the same site annotated by
module-based method and hub-based method were then
compared to test the annotation accuracy.

Additional file

Additional file 1: Figure S1. The histogram of odds ratios between
adjacency matrix built by all the 32 samples and with one sample
removed. There are no obvious outliers corresponding to samples that
will induce substantial topological changes to the co-methylation net-
work. Figure S2. Topological changes induced to the co-methylation net-
work. The topological changes induced to the co-methylation network
by samples with enzyme permutation are not bigger than the other sam-
ples. (ZIP 277 kb)
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