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ABSTRACT

N6-methyladenosine (m6A) is the most prevalent
post-transcriptional modification in eukaryotes, and
plays a pivotal role in various biological processes,
such as splicing, RNA degradation and RNA–protein
interaction. We report here a prediction frame-
work WHISTLE for transcriptome-wide m6A RNA-
methylation site prediction. When tested on six in-
dependent datasets, our approach, which integrated
35 additional genomic features besides the con-
ventional sequence features, achieved a major im-
provement in the accuracy of m6A site prediction
(average AUC: 0.948 and 0.880 under the full tran-
script or mature messenger RNA models, respec-
tively) compared to the state-of-the-art computa-
tional approaches MethyRNA (AUC: 0.790 and 0.732)
and SRAMP (AUC: 0.761 and 0.706). It also out-
performed the existing epitranscriptome databases
MeT-DB (AUC: 0.798 and 0.744) and RMBase (AUC:
0.786 and 0.736), which were built upon hundreds of
epitranscriptome high-throughput sequencing sam-
ples. To probe the putative biological processes
impacted by changes in an individual m6A site, a
network-based approach was implemented accord-
ing to the ‘guilt-by-association’ principle by inte-
grating RNA methylation profiles, gene expression
profiles and protein–protein interaction data. Finally,
the WHISTLE web server was built to facilitate the
query of our high-accuracy map of the human m6A

epitranscriptome, and the server is freely available
at: www.xjtlu.edu.cn/biologicalsciences/whistle and
http://whistle-epitranscriptome.com.

INTRODUCTION

Large scale analysis has revealed the abundance of RNA
modifications in the human epitranscriptome (1). With the
recent advances in the exploration of RNA epigenetics,
more than 150 types of RNA modifications have been iden-
tified (2). Among them, the most prevalent non-cap mod-
ification marker present on eukaryotic messenger RNA
(mRNA) and long non-coding RNA, N6-methyladenosine
(m6A), (3) has emerged as an abundant and dynamically
regulated modification (4). m6A was detected within poly-
A RNA for the first time in 1974 (5), and has since been
characterized in various eukaryotic species. In the past five
decades, various studies have demonstrated the biological
significance of m6A RNA methylation, which includes roles
in the circadian clock (6), regulation of mRNA translation
(7), heat shock response (8), microRNA (miRNA) process-
ing (9), DNA damage response (10), RNA–protein inter-
action (11) and regulation of RNA stability (12). Conse-
quently, the accurate identification of m6A locations is crit-
ical for the study and understanding of the downstream ef-
fects of RNA modification in biology.

To identify the precise location of m6A sites on mRNA,
the first whole-transcriptome m6A profiling technique
m6A-seq (or MeRIP-seq) was introduced in 2012 (13,14),
in which the m6A containing RNA fragments is immuno-
precipitated, purified and then subjected to further analy-
sis. This technique applies high-throughput sequencing to
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the IP sample enriched with m6A-containing mRNA frag-
ments. In contrast to the input control samples, it typi-
cally results in the detection of m6A containing peaks with
around 100 nt resolution using MACS, the exomePeak
R/Bioconductor Package and other peak callers (15,16).
The precise location of the m6A sites may be further nar-
rowed down to base-resolution by searching for the m6A
motif RRACH within the peaks detected with m6A signal.
Most existing epitranscriptome databases, such as, MeT-
DB and RMBase, rely on this very simple strategy (17,18).
A major limitation of this method is that it cannot dif-
ferentiate between a randomly-occurring RRACH motif
and a real m6A-containing motif located nearby, i.e. all the
RRACH motifs located within an m6A peak will be re-
ported as holding an m6A site, including the chance occur-
rences, resulting in false positive predictions. Since m6A-seq
is currently the most widely used approach for profiling the
transcriptome-wide m6A, and a very large number of the
m6A-seq samples have been acquired in different studies,
the m6A site information extracted from the m6A-seq using
the motif search strategy essentially dominates the existing
epitranscriptome databases. For this reason, it is not sur-
prising that both MeT-DB (426 544 sites) and RMBase (477
452 sites) report a very large number of transcriptome m6A
sites, many of which may be false positive due to a chance
RRACH motif located close to a real m6A site (or within
an m6A peak).

Besides the m6A-seq technique, single-based resolution
techniques such as the miCLIP (19) and m6A-CLIP (20)
were also developed. However, these experiments are usu-
ally more laborious to perform but still offer limited cover-
age of the m6A epitranscriptome, since the reported RNA-
methylation sites are still restricted to the transcripts more
readily expressed under a specific cell/tissue condition. Al-
though base-resolution profiling techniques have not been
very widely applied in biological studies due to their expense
and difficulties, they provide the ground truth of m6A site
information that is necessary for computational prediction.
To date, a large number of RNA-methylation site predic-
tion methods and web servers have been developed based
on the information extracted from base-resolution tech-
niques since 2015, including the pseudo nucleotide compo-
sition based approach iRNA-Methyl by Chen et al. (21) and
physical-chemical properties-based approach pRNAm-PC
(22). Subsequently, Zhou et al. employed SRAMP, a ran-
dom forest machine learning framework, to predict mam-
malian m6A sites using sequence features (23). Many other
site predictors have been developed for m6A and other RNA
modification, such as MethyRNA (24), RNAMethPre (25),
RAM-NPPS (26), Target M6A (27), AthMethPre (28),
iRNA-PseColl (29), M6APred-EL (30), iMethyl-STTNC
(31), iRNA-PseDNC (32), etc. (33–39). These methods have
been recently reviewed (40). These site predictors usually
take the transcript sequence as the input and report a num-
ber of possible m6A sites as the output, making them very
convenient to use. However, to our knowledge, they are ex-
clusively based on the sequence-derived information––even
when the secondary structure or other high level features
(41) are used, the information is still directly extracted from
sequence without considering other potentially useful ge-

nomic features, such as, conservation, transcript type and
gene annotation. Although the sequence information prob-
ably plays a central role, other genomic features may also
be helpful in the prediction of m6A sites and thus should be
incorporated in the analysis. Additionally, although poten-
tially feasible, none of these approaches have been applied
transcriptome-wide to reconstruct the entire m6A epitran-
scriptome, thus limiting their usage in large-scale or high-
throughput analysis.

In this project, we proposed a prediction framework,
WHISTLE, which stands for whole-transcriptome m6A site
prediction from multiple genomic features. The framework
extracted a comprehensive set of domain knowledge based
on various genomic features, and integrated them with con-
ventional sequence-derived features for reconstructing a
high-accuracy map of the m6A epitranscriptome. The ‘guilt-
by-association’ principle was then applied to further an-
notate the functional relevance of each individual RNA-
methylation site by integrating gene expression profiles,
RNA methylation profiles and PPI networks.

MATERIALS AND METHODS

Training and testing data for m6A site prediction

The data used for training and benchmarking in m6A site
prediction includes six single-base resolution m6A experi-
ment obtained from five cell types (see Table 1). The base-
resolution m6A sites in each experiment were downloaded
directly from Gene Expression Omnibus (GEO). The two
samples (MOLM13 mi-CLIP sample and the A549 m6A-
CLIP) reported based on the human genome assembly hg18
were lifted using UCSC liftOver tool (https://genome.ucsc.
edu/cgi-bin/hgLiftOver). A total of 20 516 and 17 383 m6A
sites out of the original 23 480 and 19 683 sites were lifted
to hg19, respectively. Both samples have very large number
of (>17000) positive sites that can be used for training and
testing after liftOver, and the majority (four out of six) base-
resolution samples are based on hg19 and thus do not re-
quire extra processing step.

In the beginning of the performance evaluation proce-
dure, dataset 6 of the base-resolution data (Table 1) was
used as the independent testing data, while the other five
datasets were used as the training data. The positive train-
ing data (m6A sites) was determined as the m6A sites under
RRACH consensus motifs that have been reproduced in at
least two of the five training datasets. The negative training
data (non-m6A sites) was randomly selected from the non-
positive RRACH adenosines on the full transcripts contain-
ing the positive sites (see Figure 1). Initially, the number of
randomly selected negative sites was ten times the number
of positive sites. Later, the positive-negative ratio was bal-
anced by randomly splitting the negative samples into 10
random subsets. Consequently, 10 training datasets, each
with 1:1 positive-to-negative ratio, were constructed using
different negative samples. The negative data was also gen-
erated similarly on testing data (Dataset 6), i.e. the negative
data were randomly selected non-positive m6A sites from
the m6A containing transcripts. The ratio of positive test-
ing data to negative testing data was also kept as 1:10. The
testing performances from the 10 independent sessions were
averaged.
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Figure 1. Generation of positive and negative data. The transcriptome
m6A sites under RRACH consensus motifs that have been reproduced in
at least two of the five training datasets were used as positive m6A sites.
The negative training data (non-m6A sites) was randomly selected from
the non-positive RRACH adenosines on the full transcripts containing the
positive sites.

To exclude randomness of testing dataset from the
m6A site prediction evaluation, we also applied dataset
level leave-one out validation over the six base-resolution
datasets. In each round of the dataset level validation, one of
the six base-resolution datasets was used as the independent
testing data, while the remaining five datasets were used as
the training data. The same rules of the training and test-
ing data generation were applied as previously described in
each individual test. As the training and testing data were
all extracted from different independent experiments, there
should be no overfitting problem.

Features for m6A site prediction

Sequence-derived features. The sequence-based informa-
tion around the RRACH motif was encoded using the
same method of m6Apred (44) and MethyRNA (24), which
have been shown to be quite effective and achieved good
performance in human and yeast m6A site prediction.
The sequence feature encodes the nucleotides sequence by
three distinct structural chemical properties: ring structures,
functional groups and hydrogen bonds. Specifically, ade-
nine and guanine have two ring structures, while cytosine
and uracil have only one ring; adenine and cytosine con-
tain the amino group, while guanine and uracil contain
the keto group; adenine and uracil can form two hydrogen
bonds during hybridization, whereas guanine and cytosine
can form three hydrogen bonds. Based on the three struc-
tural chemical properties defined above, the i-th nucleotide
from sequence S can be encoded by a vector Si = (xi , yi , zi ):

xi =
{

1ifsi ∈{A,G}
0ifsi ∈{C,U} , yi =

{
1ifsi ∈{A,C}
0ifsi ∈{G,U} , zi =

{
1ifsi ∈{A,U}
0ifsi ∈{C,G} (1)

Therefore, the A, C, G, U can be encoded as a vector
of three features (1,1,1), (0,1,0), (1,0,0) and (0,0,1), respec-
tively. Additionally, a feature of the cumulative nucleotide
frequency is calculated for each nucleotide position in the
sequence. The density of the i-th nucleotide di is defined
as the sum of all the instances of the i-th nucleotide before
the i + 1 position. The nucleotide frequency fi is defined by
the following formula: fi = di/ i . Using the sequence ‘AUG-
GACACU’ as an example, the cumulative frequency for
adenine is 1.00 (1/1), 0.40 (2/5) and 0.43(3/7) at the first,
fifth and seven position, respectively; while the frequency
for uracil is 0.50 (1/2) and 0.11 (1/9) at the second and ninth
respective position.

Genome-derived features. Most existing RNA modifica-
tion site prediction algorithms use exclusively sequence-
based features; however, such features alone may not
fully capture the attributes of RNA modification topol-
ogy. Hence, we generated 35 additional genomic features
that may contribute to the prediction. Genomic Features
1–13 are dummy variable features indicating whether the
adenosine sites shall fall within the transcript regions
that satisfy certain topological properties. All the features
in this category are generated by the GenomicFeatures
R/Bioconductor package (45) using the transcript annota-
tions hg19 TxDb package. To remove the ambiguity caused
by transcript isoforms, only the primary (longest) tran-
scripts of each gene were kept for the extraction of the tran-
script sub-regions. Genomic Features 14–16 are real valued
features defining the relative position of the transcript re-
gions (3′UTR, 5′UTR and whole transcript), i.e. the dis-
tance from the adenine to the 5′ end divided by the width of
the region. The values are also set to zero for sites that do
not belong to the region. Genomic features 17–19 represent
the length of the transcript region containing the modifica-
tion site. The values are also set to zero for sites that not be-
long to the region. Features 20–22 capture the distance from
the adenine sites to the 5′end or 3′end of the splicing junc-
tions. Additionally, the distance to the nearest neighboring
m6A sites in the training data is generated to measure the
clustering effect of the m6A RNA modification sites. Fea-
tures 23–26 represent the evolutionary conservation score
of the adenosine sites and its flanking regions; two met-
rics of nucleotide conservation, Phast-Cons score (46) and
the fitness consequence scores are used to measure the con-
servation level of the underlying nucleotide sequence. Fea-
tures 27 and 28 represent the RNA secondary structures
around the adenine site, the RNA secondary structures are
predicted using RNAfold from the Vienna RNA package
(47). Finally, features 29–35 are the properties of the genes
or transcripts containing the m6A sites, such as being the
miRNA target genes or housekeeping genes. The annota-
tion of miRNA target sites are from miRanda (48) and Tar-
getScan (49). Supplementary Table S1 contains more details
about the genomic features we considered in the prediction.

Machine learning approach used for m6A site prediction

The Support Vector Machine (SVM) is one of the most
widely used machine learning algorithms in computational
biology. It was previously used for mammalian miRNA
target prediction (50), protein kinase-specific phosphoryla-
tion sites prediction (51) and mammalian m6A modifica-
tion sites prediction (24,25). In this project, we used an R
language interface of LIBSVM (52) to construct the SVM-
based m6A site predictors. Following previous approaches
(21,22), the radial basis function was chosen as the kernel
function, and the other parameters were set at the default.
Random Forest is another popular machine learning algo-
rithm applied in biology data, and one of the earliest mam-
malian m6A site predictor SRAMP was developed based on
the Random Forest approach (23). In this project, we also
use Random Forest from the R package randomforest (53)
to compare the predictive performance using SVM.
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Performance evaluation of m6A site prediction

For both the SVM and random forest classifiers, a 5-
fold cross-validation was employed on the training datasets
for model selection purpose, and the final performance
of the predictor was measured on the independent testing
dataset. The receiver operating characteristic curve (sensi-
tivity against 1-specificity) was used to measure the predic-
tion performance under different decision thresholds, and
the area under the curve (AUC) was calculated as the main
performance evaluation metric.

When evaluating the accuracy of m6A site informa-
tion stored in existing epitranscriptome m6A site databases
MeT-DB Version 2 and RMBase Version 2, the reliability
was determined by the number of experiments that sup-
port the existence of a specific m6A site, based on which
the AUC can be calculated. In addition, the sensitivity
(Sn), specificity (Sp) and Matthews correlation coefficient
(MCC) were calculated to measure the performance of pre-
dictor:

Sn = T P
T P + F N

(2)

Sp = TN
TN + F P

(3)

MCC = T P × TN − F P × F N√
(T P + F P) × (T P + F N) × (TN + F P) × (TN + F N)

,(4)

where, TP, TN, FP and FN represent true positive, true neg-
ative, false positive and false negative, respectively. When
different methods were compared under AUC, they always
use the same positive and negative gold standard dataset,
and AUCs were always calculated in the same way. The
AUCs of different methods reported in our manuscript are
therefore strictly comparable.

Estimate the posterior probability of RNA methylation

The existing machine learning approaches usually report
the probability of an m6A motif to be an actual methyla-
tion site under the assumption of equal prior probability,
i.e. the prior probability of an m6A motif being an m6A
site is 0.5. However, it is known in practice that the num-
ber of m6A sites is a lot smaller than the number of m6A
motifs, so the number of RNA-methylation sites under a
specific experimental condition is likely to be significantly
over-estimated. To address this bias, a posterior probabil-
ity of RNA methylation under a specific condition is cal-
culated with: qM,i = πM pM,i

(1−πM)(1−pM,i )+πM pM,i
, where, πM is the

prior probability that a transcriptome RRACH motif em-
braces a true m6A site under a specific model, which is cal-
culated empirically from the 6 base-resolution datasets (see
Table 1) as the average number of m6A sites under a condi-
tion divided by the number of occurrences of transcriptome
RRACH motifs that are supported by at least one m6A
record in MeTDB for the mature mRNA model, or RM-
Base for the full transcript model. These is also the search
space of our predicted m6A epitranscriptome. pM,i is the
predicted probability (or likelihood) of the i-th site being a
real m6A site under a specific model M, and (1 − pM,i ) is

Table 1. Base-resolution dataset used in m6A site prediction

ID Cell Note Technique Source

1 HEK293 abacm antibody mi-CLIP (19)
2 HEK293 sysy antibody (19)
3 MOLM13 (42)
4 A549 m6A-CLIP (20)
5 CD8T (20)
6 HeLa (43)

the probability of the opposite being true. qM,i is a poste-
riori probability of the i-th site being a real m6A site un-
der a specific condition. The posterior probability qM,i is
also reported in the WHISTLE database along with the
probabilitypM,i .

RESULTS AND DISCUSSION

m6A site prediction

The predictors on the full-transcript data were established
first in which the true m6A site and negative sites may be
located in both exonic and intronic regions. Because ex-
perimental procedures, especially the polyA selection step,
may induce bias toward mRNA, we also consider a mature
mRNA model, under which, the goal is to predict only ex-
onic m6A sites, and thus only the exonic regions are consid-
ered.

We show in Supplementary Table S3 that, although the
genome-derived features alone are already very effective for
predicting m6A sites, the best performance is achieved when
the sequence features and genomic features are combined.
Consequently, our m6A site predictor was established based
on both the genome-derived features and sequence-derived
features.

Feature selection was performed to identify the most
effective genomic features for m6A site prediction. Here,
datasets 1–5 were used as the training data, while dataset
6 was used as the independent testing data. The relative im-
portance of each genome-derived feature in the prediction
was firstly assessed with the Perturb method (54) using the
R caret package. Next, the N most important features were
retained in the prediction analysis, and the prediction per-
formance was evaluated using a 5-fold cross-validation. As
shown in Supplementary Figure S1A, the predictor perfor-
mance under the full transcript model stops increasing after
including the top 14 most important genomic features. The
top three most critical genomic features under this model
are long exon, miRNA target and conservation score. To
achieve the most robust performance and to avoid poten-
tial overfitting, only the top 14 genomic features were used
in the full transcript model for m6A site prediction purpose
in later analysis. Similarly, the top 19 genome-derived fea-
tures with the highest importance were selected for the ma-
ture mRNA model (see Supplementary Figure S1B). The
distance to known m6A sites became the most important
predictive feature, which demonstrated the clustering effect
of m6A modification, followed by long exon and conserva-
tion under the mature mRNA model.

The performance of the proposed m6A predictors was
then evaluated using independent datasets and compared
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Table 2. Performance evaluation of m6A site prediction methods

Performance on independent dataset (AUC)

Model Method A549 CD8T Hela HEK293 (sysy) HEK293 (abacm) MOLM13 Average AUC

Full Transcript WHISTLE 0.965 0.930 0.953 0.936 0.968 0.933 0.948
MethyRNA* 0.807 0.800 0.741 0.848 0.778 0.765 0.790
SRAMP 0.856 0.841 0.762 0.883 0.838 0.759 0.761#

Mature mRNA WHISTLE 0.903 0.904 0.894 0.936 0.818 0.823 0.880
MethyRNA 0.751 0.734 0.676 0.848 0.698 0.686 0.732
SRAMP 0.814 0.796 0.702 0.869 0.796 0.710 0.706#

Note: *The MethyRNA approach uses sequence-derived features with SVM (24), which we reproduced faithfully with the same training data of WHISTLE
for comparison.
#The SRAMP method was originally trained on A549, CD8T, HEK293 (sysy) and HEK293 (abacm). To avoid overfitting, only Hela and MOLM13 were
considered when evaluating its average performance.
Only the m6A sites not previously used as training data were considered during performance evaluation, so the training sites and testing sites have no
overlap. Please see Supplementary Table S4 for the results when all sites from the independent testing samples were considered.

with competing approaches (Table 2). By combining ad-
ditional genome-derived features, the performance of our
approach was substantially higher in all the tested condi-
tions than MethyRNA and SRAMP, which rely only on in-
formation extracted from sequences. WHISTLE achieved
AUCs of 0.948 and 0.880 under the full transcript and ma-
ture mRNA modes, respectively, representing a major im-
provement compared to MethyRNA (0.790 and 0.732) and
SRAMP (0.761 and 0.706).

A predicted map of human m6A epitranscriptome

With the extensive study of RNA epigenetics, especially
the accumulation of large number of m6A-seq datasets,
the transcriptome-wide distribution of m6A sites have
been summarized and made available from bioinformatics
databases, such as MeT-DB (55) and RMBase (56). MeT-
DB is the first transcriptome m6A database that provides
condition-specific distribution of m6A RNA methylation
in human and mouse initially, and later in other species as
well; while RMBase is a more comprehensive RNA modi-
fication database, supporting more species and more RNA
modification types. However, as these two databases over-
whelmingly rely on m6A-seq data, and implemented a data
processing pipeline that could not differentiate between true
and randomly-occurring m6A motif located in close prox-
imity within an m6A peak, the information they provide
may not be accurate and should be re-assessed.

The reliability of a specific m6A site in epitranscriptome
databases has been measured by the number of experiments
that support the record. This metric will be used when eval-
uating the accuracy of the two databases. Interestingly, as
shown in Table 3, when comparing the two epitranscrip-
tome databases, the exomePeak-based MeT-DB database
is slightly more accurate than primarily the MACS-based
RMBase database. However, even with hundreds of high-
throughput sequencing datasets accumulated, existing epi-
transcriptome databases are still far less accurate than what
we may achieve with machine learning approaches (see Ta-
ble 2).

We thus performed a whole transcriptome prediction
of m6A RNA-methylation sites in human to generate a
map of human m6A epitranscriptome using our proposed
WHISTLE approach. Our predicted map is of substantially

higher accuracy (average AUC of 0.948 and 0.880) com-
pared with existing epitranscriptome databases MeT-DB
(average AUC of 0.798 and 0.744) and RMBase (average
AUC of 0.786 and 0.736) when evaluated on independent
base-resolution datasets under both full transcript and ma-
ture mRNA mode, respectively. Additionally, we calculated
a posterior probability of RNA-methylation site under a
specific experimental condition. This provided a more em-
pirical evaluation of the methylation status by taking into
consideration the prior probability of an m6A motif being
an m6A site, which is estimated from the base-resolution
datasets.

Besides CLIP-based approaches, we also tested the ac-
curacy of the proposed method on a high resolution m6A-
seq dataset (57). Although still antibody-based, this m6A-
seq dataset was generated from an improved protocol and
achieved near base resolution (58). As shown in Table 4,
when antibody-based m6A-seq technique is used as the
ground truth, WHISTLE still substantially outperformed
competing approaches under both the full transcript and
mature mRNA models.

Website interface

An online database has been built to host the pre-
dicted human m6A epitranscriptome. The individual
RNA-methylation sites were then functionally annotated
with gene expression data, RNA methylation data and
protein–protein interaction data according to the ‘guilt-by-
association’ principle (detailed in the Supplementary File
S2). As is shown in Figure 2, The website supports queries
that may be a methylation site, a gene or a specific biolog-
ical function under the Gene Ontology framework (59). It
also supports the download of the original base-resolution
datasets (Table 1) used for site prediction and the entire pre-
dicted epitranscriptome map with the functional annota-
tions for large-scale analysis.

CONCLUSIONS

Along with recent advances in RNA epigenetics, especially,
the development of new techniques for profiling the RNA
methylome (60,61), computationally deciphering the epi-
transcriptome from various omic data presents a major
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Table 3. Performance evaluation for bioinformatics databases

Group truth dataset used (AUC)

Mode Method A549 CD8T Hela HEK293 (sysy) HEK293 (abacm) MOLM13 Average AUC

Full Transcript RMBase 0.825 0.788 0.832 0.837 0.701 0.733 0.786
MetDB 0.835 0.802 0.843 0.848 0.719 0.744 0.798

Mature mRNA RMBase 0.768 0.716 0.790 0.752 0.707 0.682 0.736
MetDB 0.775 0.730 0.795 0.762 0.716 0.683 0.744

Note: To ensure the results are comparable to Table 2, only the unique sites not previously reported in the training data of predictors were considered.
Please see Supplementary Table S4 for the results when all sites from the independent testing samples were considered.

m6A-CLIP

miCLIP

Whole Transcriptome 
m6A Site Prediction

  Sequence & 
Genomic Features

mod_name chromosome modStart modEnd width strand       geneName         Predicted_BP  Predicted_MF      Predicted_CC

Search:entriesShow 10

m6A_38 chr1 205738584 205738584 1 -          RAB29        474        182        143
m6A_55 chr1 35657975 35657975 1 -          SFPQ        297        0                      58
m6A_57 chr1 154143134 154143134 1 -          TPM3        21                      3                      49
m6A_62 chr1 54502366 54502366 1 -          TMEM59       1541        227                     236
m6A_64 chr1 11126765 11126765 1 -          EXOSC10       215        14                      166
m6A_71 chr1 205719306 205719306 1 -          NUCKS1        471        56                      123
m6A_72 chr1 226349291 226349291 1 -          ACBD3        53                      4                      95
m6A_106 chr1 205116535 205116535 1 -          DSTYK        1140        133                     232
m6A_108 chr1 8923344 8923344 1 -          ENO1        117        0                      18
m6A_113 chr1 156084502 156084502 1 +         LMNA        304        69                      152

Mod_name Gene_id Function                                                      GO_type       p_value
m6A_1               IL17RA               ribonucleoprotein complex biogenesis BP        1.2000e-03
m6A_8               MALAT1 ribonucleoprotein complex biogenesis BP        1.4290e-02
m6A_9               YME1L1 ribonucleoprotein complex biogenesis BP        9.9800e-03
m6A_10 SLIRP               ribonucleoprotein complex biogenesis BP        1.9230e-02
m6A_11 ATP5G3 ribonucleoprotein complex biogenesis BP        3.5800e-03
m6A_13 MRPS11 ribonucleoprotein complex biogenesis BP        2.3260e-02
m6A_14 DYNLL1 ribonucleoprotein complex biogenesis BP        5.1200e-03
m6A_15 FASN               ribonucleoprotein complex biogenesis BP        3.8900e-03
m6A_17 HEXIM1 ribonucleoprotein complex biogenesis BP        4.0500e-03
m6A_23 ERCC1               ribonucleoprotein complex biogenesis BP        2.4800e-03

Query by Function

MeRIP-Seq

RNA-Seq

Protein-protein 
Interactions

Query by Gene

Mod_name Gene_id Function                                                              GO_type p_value
m6A_29 SUCLG1 DNA repair                                                                  BP              1.0500e-03
m6A_29
m6A_29 SUCLG1 microtubule cytoskeleton organization          BP              1.0700e-03
m6A_29
m6A_29 SUCLG1 glycerolipid metabolic process                        BP              1.0900e-03
m6A_29 SUCLG1 nuclear division                                                    BP              1.0900e-03
m6A_29
m6A_29
m6A_29 SUCLG1 cilium organization                                                    BP              1.1000e-03
m6A_29 SUCLG1 cilium assembly                                                    BP              1.1000e-03

Table View

Individual m6A Site Annotation 
with Guilt-by-Association

WHISTLE 
web server

Query by 
Gene

Query by 
GO function Table View Full 

Download

Information Release

 SUCLG1 covalent chromatin modifciation                              BP              1.0500e-03

 SUCLG1 organelle fission                                                             BP              1.0700e-03

 SUCLG1 myeloid cell differentiation                                         BP              1.0700e-03
 SUCLG1 pattern specification process                                     BP              1.100e-03

Figure 2. WHISTLE website. The WHISTLE website hosts a functionally annotated high-accuracy predicted map of the human m6A epitranscriptome.
The WHISTLE website supports direct query of RNA-methylation sites with respect to a specific GO function or gene. The m6A RNA-methylation
sites were predicted from m6A-CLIP data, miCLIP data, sequence features and genome-derived features. And then, the most dynamic RNA-methylation
sites were annotated under the Gene Ontology framework using the guilt-by-association principle by integrating gene expression, RNA methylation and
protein–protein interaction data. Please Supplementary Figure S2 for the complete data processing pipeline of WHISTLE.

Table 4. Performance assessment using high resolution m6A-seq data

AUC under full
transcript model

AUC under mature
mRNA model

WHISTLE 0.980 0.904
MethyRNA 0.904 0.826
SRAMP 0.825 0.783
RMBase 0.774 0.758
MeTDB 0.775 0.767

Note: The high confidence consensus m6A sites detected in more than two
of the total six high resolution m6A-seq experiments (57) were considered.
Similar as before, MethyRNA and WHISTLE used the same m6A datasets
for training. Only the unique sites not previously reported in the training
data were considered here. Please see Supplementary Table S5 for the re-
sults when all sites from the independent testing samples were considered.

challenge to the bioinformatics community. In the past
few years, sequence-derived features have been widely used
for the prediction of RNA modification sites in human

(24), mouse (24), other mammals (23,25), yeast (30,62) and
other species; and a few major bioinformatics databases, in-
cluding MeT-DB (18), RMBase (17), m6AVar (63), MOD-
OMICS (64) and RNAMDB (65) have been built. These
databases address various aspects of the RNA modifi-
cations including transcriptome-wide distribution, mecha-
nism pathway, relevance to miRNA and RNA-binding pro-
teins, functional variants, etc., and have greatly benefited re-
searchers in this field.

Here, we constructed a functionally annotated high-
accuracy predicted map of human m6A epitranscriptome
and named it WHISTLE. The most stringent validation
strategy was implemented, in which the performance of
WHISTLE was assessed on six independent datasets (Ta-
bles 2 and 3) and on dataset generated from a different tech-
nique (Table 4). By integrating 35 genome-derived features
with the conventional sequence-derived features, WHIS-
TLE achieved a substantial improvement in accuracy, un-
der both the full transcript model and the mature mRNA
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model, compared with existing machine learning-based
m6A predictors and the latest epitranscriptome databases.

It is worth noting that, the prediction performance
achieved on the full transcript model (AUC: 0.948) may be
significantly over-estimated due to the library preparation
(polyA selection) of the miCLIP and m6A-CLIP samples
used, because they cannot effectively capture the intronic
m6A sites. The performance achieved on the mature mRNA
model (AUC: 0.880) is probably a more realistic estimate.

A web server WHISTLE was built to enable the direct
query of predicted RNA-methylation sites, their putative
functions and their potential association to other methyla-
tion sites or genes, which provides the requisite data for the
further epitranscriptome studies in human.

Our work has provided a computational scheme to study
the m6A epitranscriptome based on multi-omics datasets
using machine learning and network-based method. In the
future, it can be easily expanded to the study of other RNA
modifications, such as m1A (66) and Pseudouridine (67), as
well as in other species, such as mouse and yeast.
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